science) environment) community

October 26, 2020

FINAL REPORT Santa Susana Field Laboratory

Evaluation of Off-site Impacts from the Woolsey Fire Burning on Portions of the Santa Susana Field Laboratory Site

Submitted to Gibson, Dunn & Crutcher LLP

RAC Report No. 01-SSFL-2020-FINAL

October 26, 2020

FINAL REPORT Santa Susana Field Laboratory

Evaluation of Off-site Impacts from the Woolsey Fire Burning on Portions of the Santa Susana Field Laboratory Site

<u>Authors</u> Arthur S. Rood, M.S., K-Spar, Inc. H. Justin Mohler, M.S., Bridger Scientific, Inc. Helen A. Grogan, Ph.D., Cascade Scientific, Inc. Emily A. Caffrey, Ph.D., Radian Scientific, LLC Colby Mangini, Ph.D., CHP, Paragon Scientific, LLC

<u>Principal Investigator</u> John E. Till, Ph.D., Risk Assessment Corporation

RAC Report No. 01-SSFL-2020-FINAL

Executive Summary

The purpose of this study was to determine if any radioactive material from the SSFL was released to the atmosphere during the Woolsey Fire and transported downwind by the smoke plume to the surrounding communities. Addressing this question involved computer modeling, soil sampling and environmental data analysis.

Modeling was performed to understand the progression of the fire on the SSFL, where the plume of smoke likely travelled during this time interval and the potential deposition of particulate matter associated with it. A timeline of fire progression on the SSFL was constructed using meteorological data in combination with video footage taken during the fire at air sampling stations operated by Boeing and NASA along with supporting information. Air monitoring data from the Department of Energy (DOE) was also utilized. The fire was segregated into 10 regions covering the time from when the fire began to when it ceased active burning on the SSFL. The Fire Emission Production Simulator model was used to calculate emissions of particulate matter from each segment, and output from this model was coupled with the CALPUFF Version 7 model to calculate transport and deposition of particulate matter. Any radionuclides on vegetation and in surface soil released by the fire were assumed to follow the particulate matter release and deposition. The predicted particulate matter deposition plume trended southwest from the SSFL and formed the basis for identifying soil sampling locations. Highest PM₁₀ deposition offsite (See Section 3.4) was determined to be northeast of the Oak Park would be lower because of dilution and dispersion.

Based on the modeling described above, 16 soil sampling locations were identified that included locations across the plume and several background locations that were not impacted by the Woolsey Fire while it burned on the SSFL. Sampling focused on the region of highest predicted off-site particulate deposition. Depth-profile sampling was used to evaluate whether radionuclides of SSFL origin were potentially emitted and deposited during the Woolsey fire. Samples were taken in 0-3 cm, 3-6 cm, and 6-12 cm layers. If radionuclides had been deposited from the Woolsey Fire, then they would be detected in the surface (0-3 cm) layer (See Section 5.3) and would be expected to be higher within the plume footprint than outside it.

Soil sampling was carried out August 5–8, 2019 at the 16 locations and 3 depth intervals for a total of 48 soil samples. Each sample was analyzed for 61 radionuclides by GEL Laboratories, LLC. Twenty-eight radionuclides were detected in at least one soil sample. Radionuclides detected were determined to be background, either naturally occurring or of global weapons testing fallout origin, and not from the SSFL. Weighted average concentrations were compared to background concentrations determined by the U.S. Environmental Protection Agency for SSFL (HydroGeologic Inc. 2011). Radionuclides were considered of natural origin if the concentrations were generally uniform with depth. Occurrences of natural occurring radionuclides at concentrations above the established background for the SSFL were attributed to natural variability in geologic formations and not the SSFL because the concentration depth profiles were generally uniform. No anthropogenic radionuclides were measured at levels above those expected from global weapons testing fallout.

Based on the soil sampling, we found no evidence of SSFL impact in off-site soils as a result of the Woolsey fire. Moreover, we found no radionuclide impact on the off-site soils we sampled from past operations of the SSFL.

Contents

Executive Summary
Figures
Tablesix
Acronyms and Abbreviationsx
Unit Conversion Tablexi
Scientific Notation (E-format)xi
1. Introduction1
1.1. Brief Summary of SSFL History and Site Operations1
2. Progression and Modeling of the Woolsey Fire on the SSFL2
2.1. Model Simulation of Fire
3. Model Simulation of Atmospheric Transport of Particulate Matter Emitted from the Woolsey Fire on the SSFL
3.1. Model Domain and Computational Grid9
3.2. Meteorological Data9
 3.3. CALMET and CALPUFF Technical Options
3.4. Predicted and Observed PM _{2.5} Concentrations
 3.5. Deposition Pattern of Particulate Matter
4. Environmental Monitoring Data
4.1. SSFL Environmental Monitoring Program and Available Data
 4.2. Background Concentrations
<i>LU</i>

4.2.2. Measured Background Radionuclides in Air on the SSFL	31
4.2.3. Background Radionuclides in Soil on the SSFL	
4.3. Data Analysis	
4.3.1. Particulate Matter in Air	
4.3.2. Radionuclides in Air	
4.3.3. Radionuclides in Soil	41
4.3.4. Vegetation Monitoring	45
4.3.5. Summary of Findings from Environmental Data Collected before and durin	g the Fire
5. Soil Sampling	47
5.1. Identifying Sampling Locations	47
5.1.1. Sample Location Geology	49
5.2. Sample Protocol	
5.2.1. Sampling Procedure	51
5.2.2. Analytes and Laboratory Analysis	53
5.2.3. Critical Levels and Minimum Detectable Concentrations	54
5.3. Evaluation of Sampling Results	57
5.3.1. Samples that Exceed the BTV	65
5.3.2. Results from TestAmerica Laboratory of Sample Split at Location 2	67
5.3.3. Radionuclide Concentration Cross Section across the Deposition Plume	70
5.3.4. Summary of Findings from Sampling Analysis	75
6. Conclusions	76
7. References	77
Appendix A Sample Label and Collection Sheets	A-1
Appendix B Analytical Results from the Laboratories	B-1
Appendix C Geographical Information Resources	C-1
Appendix D Statistical Analysis	D-1
Appendix E Potential Dose that Soil Sampling Can Detect	E-1

Figures

Figure 1-1. Santa Susana Field Laboratory (SSFL) showing administrative areas and buffer zone.
Figure 2.1 Bagion around the SSEL where the Woolcov Fire hurned. Successful anition points
identified by CAL FIRE are depicted by fire symbol. Fire outline was obtained from LA
County (2019)
Figure 2-2. Map developed by RAC to show progression of fire on the SSFL. The fire was
segregated into 10 regions numbered sequentially from starting region (1) on November 8 at 14:30 (rounded to the nearest half-hour) to ending region (10). Active fire burning on SSFL ceased on the early morning of November 11, but all regions smoldered for some time after
active burning4
Figure 2-3. Wind speed as a function of time measured at Boeing meteorological tower during
Woolsey Fire
Figure 2-4. Relative humidity as a function of time measured at Boeing meteorological tower
during Woolsey Fire7
Figure 2-5. Temperature as a function of time measured at Boeing meteorological tower during Woolsey Fire
Figure 2-6. FEPS-predicted release rate of PM _{2.5} as a function of time from Woolsey Fire burning on the SSFL
Figure 3-1. Location of the three meteorological towers at SSFL. Meteorological data were also
collected at Boeing PM ₁₀ sampling stations at the 2-m level10
Figure 3-2. Wind roses during the fire for Boeing and NASA towers and particulate monitors 1 and
2. Instruments on the towers were at 10 to 15-m height and meteorological instruments at the particulate monitors were at 2-m height
Figure 3-3. Wind roses during the fire for particulate monitors 3, 4, 5, and 6. Meteorological instruments at the particulate monitors were at 2-m height
Figure 3-4. Average PM _{2.5} ambient air concentration from the fire burning across the SSFL from November 8, 1400 to November 10, 2200
Figure 3-5. Isopleth map showing predicted total deposition of PM ₁₀ from Woolsey Fire burning on the SSFL from November 8 to November 11, 2018. Woolsey Fire outline is also shown. 19
Figure 3-6. Isopleth map showing predicted total deposition of PM ₁₀ from Woolsey Fire burning on the SSFL on November 8. Woolsey Fire outline is also shown
Figure 4-1. Map showing locations of baseline air samplers at the SSFL along with the area burned by the fire
Figure 4-2. Detailed map showing locations of Boeing, DOE, and NASA air samplers at SSFL.24
Figure 4-3. Uranium-238 decay scheme showing short-lived progeny that will be present
alongside the parent. Uranium-238 and its progeny are naturally occurring radionuclides and present in most soils and rocks (from http://metadata.berkeley.edu/nuclear-
forensics/Decay%20Chains.html)26
Figure 4-4. Thorium-232 decay series showing short-lived progeny that will be present alongside the parent. Thorium-232 and its progeny are naturally occurring radionuclides and present in
most soils and rocks (from http://metadata.berkeley.edu/nuclear-
Iorensics/Decay%20Chains.html)

Figure 4-5. Uranium-235 decay series showing short-lived progeny that will be present alongside the parent. Uranium-235 and its progeny are naturally occurring radionuclides and present in most soils and rocks (from http://metadata.berkeley.edu/nuclear- forensics/Decay%20Chains.html)
Figure 4-6. Neptunium-237 decay series showing short-lived progeny that will be present alongside the parent. Neptunium-237 and its progeny are radionuclides primarily derived from nuclear weapons fallout (from http://metadata.berkeley.edu/nuclear- forensics/Decay%20Chains.html)
Figure 4-7. Time history of the daily average PM ₁₀ concentration measured at Boeing air sampling stations
Figure 4-8. Time history of the daily average PM ₁₀ concentration measured at NASA air sampling stations
Figure 4-9. Time history of the daily average PM ₁₀ concentration measured at DOE air sampling stations
Figure 4-10. Gross alpha concentrations in air measured by Boeing at monitoring station 4. Error bars represent the 2-sigma analytical uncertainty for the measured concentration37
Figure 4-11. Gross alpha concentrations in air measured by Boeing at monitoring station 5. Error bars represent the 2-sigma analytical uncertainty for the measured concentration37
Figure 4-12. Gross beta concentrations in air measured by Boeing at monitoring station 4. Error bars represent the 2-sigma analytical uncertainty for the measured concentration
Figure 4-13. Gross beta concentrations in air measured by Boeing at monitoring station 5. Error bars represent the 2-sigma analytical uncertainty for the measured concentration
Figure 4-14. Gross alpha concentrations in air measured by DOE in Area IV. Analytical uncertainty was not provided with DOE sample results
Figure 4-15. Gross beta concentrations in air measured by DOE in Area IV. Analytical uncertainty was not provided with DOE sample results
Figure 4-16. Plutonium-239 concentrations in soil compared to the EPA Background Threshold Value (BTV) (HydroGeologic 2011) of 0.0134 pCi g ⁻¹ . Red dotted line represents fire boundary
Figure 4-17. Strontium-90 concentrations in soil compared to the EPA Background Threshold Value (BTV) (HydroGeologic 2011) of 0.0735 pCi g ⁻¹ . Red dotted line represents fire boundary
Figure 4-18. Cesium-137 concentrations in soil compared to the EPA Background Threshold Value (BTV) (HydroGeologic 2011) of 0.229 pCi g ⁻¹ . Red dotted line represents fire boundary44
Figure 5-1. Sampling locations overlaying model predicted PM ₁₀ deposition plume and the Woolsey Fire burn extent. Samples 1, 2, and 5 were at or near EPA background locations that were sampled in 2011 (HydroGeologic 2011)
Figure 5-2. Depth profile sampling layers. Each layer contained 1,875 cm ³ of soil. The area of the lowest sampled layer (6–12 cm) was halved to 25 cm × 12.5 cm. The 0–3-cm top layer would contain atmospheric deposition from Woolsey Fire and ¹³⁷ Cs from weapons fallout
Figure 5-3. Field sampling procedure. (1) The 25 cm × 25 cm frame placed over soil surface before excavation and scintillometer reading made. (2) Surface layer (0–3 cm) excavation complete and sample bottled in 2 L container. (3) Excavation pit after all three layers were excavated.
Figure 5-4. Annual wind rose measured at DOE meteorological tower from 2004 to 200870

Figure 5-5. Plume deposition map showing cross-section line and terrain elevations. Cross-section
line starts at sample location 2 and proceeds east to sample locations 3, 4, 5, 13, 14, 6, 8, 9,
10, and 1171
Figure 5-6. Terrain and simplified geologic cross section showing sample locations and geologic
formations that are expressed on the surface. Folds, faults, and other structural features are not
shown72
Figure 5-7. Deposition plume (gray-shaded region, right axis) and radionuclide concentrations (left
axis) that were detected in 0–3 cm layer at all sample locations
Figure 5-8. Depth profiles for ²²⁶ Ra, ²³⁰ Th, ²³⁸ U, and ¹³⁷ Cs at locations 5 (background), 14 (center
of plume), and 11 (east of plume). Cesium-137 soil concentrations are highest in the surface
and generally decrease with depth, which is expected in undisturbed soil containing
atmospheric fallout from weapons testing. Uranium decay-chain radionuclides exhibit a more-
or-less uniform depth distribution, as would be expected for radionuclides of natural origin.

Tables

Table 2-1. Fire Regions on the SSFL, Area Burned, and Date and Time
Table 2-2. FEPS-Predicted PM2.5 Emissions and Biomass Consumed during Woolsey Fire
Table 3-1. Measured 24-hr Average PM ₁₀ and PM _{2.5} Concentrations at Boeing Samplers
Table 3-2. Measured 24-hr Average PM ₁₀ and PM _{2.5} Concentrations at NASA Samplers14
Table 3-3. Measured 24-hr Average PM ₁₀ Concentrations at DOE Samplers14
Table 3-4. Measured and Predicted Net 24-hr Average PM2.5 Concentrations at the Boeing
Samplers ($\mu g m^{-3}$)15
Table 3-5. Measured and Predicted Net 24-hr Average PM2.5 Concentrations at the NASA Samplers
$(\mu g m^{-3})$ 16
Table 3-6. Measured and Predicted Net 24-hr Average PM2.5 Concentrations at the DOE Samplers
$(\mu g m^{-3})$ 17
Table 4-1. Background Concentrations in Air Based on Pre-Fire Data from Boeing, DOE, and
NASA
Table 4-2. Radionuclide Background Threshold Values (BTV) and Radionuclides Identified as
Priority-1 Radionuclides
Table 4-3. Concentrations (µCi mL ⁻¹) of ²³⁹ Pu and ⁹⁰ Sr Measured in Air by DOE Samplers in Area
IV41
Table 4-4. Summary of Historical Detected Radionuclide Soil Concentrations Measured at the
SSFL. Concentrations Include Natural Background and Weapons Fallout ^a 41
Table 4-5. Bounding Estimate of the Radionuclide Inventory in the 0-3 cm Layer on the SSFL,
Predicted Deposition and Soil Concentration at Oak Park, and Comparison to Background
BTV
Table 5-1 Sample Location Coordinates, Geologic Formation, and Ownership Entity49
Table 5-2. Radionuclide List and Actual and Requested Minimum Detectable Concentrations55
Table 5-3. Sample Depths, Mass, and Estimated Bulk Density57
Table 5-4. Sample Results with Positive Detections, the Weighted Average Concentration, and
Comparison of the Weighted Average Concentration with the BTV ^{a, b}
Table 5-5. Sample Results that have a Weighted Average Concentration Greater than the BTV.66
Table 5-6. Sample Results from TestAmerica with Positive Detections, the Weighted Average
Concentration, and Comparison of the Weighted Average Concentration with the BTV 67
Table 5-7. Ratio of the TestAmerica Result to GEL for Radionuclides Positively Detected by
TestAmerica and GEL

Acronyms and Abbreviations

AFB	Air Force Base
ASER	Annual Site Environmental Report
BTV	background threshold value
CALMET	a diagnostic three-dimensional meteorological model
CALPOST	a post-processing package for the CALPUFF output
CALPUFF	an air quality dispersion model
DCS	Derived Concentration Standard
DOE	U.S. Department of Energy
DTSC	Department of Toxic Substance Control
EPA	U.S. Environmental Protection Agency
ETEC	Energy Technology Engineering Center
FEPS	Fire Emissions Production Simulator
FRMAC	Federal Radiological Monitoring and Assessment Center
GPS	Global Positioning System
ICRP	International Commission on Radiation Protection
MDA	minimum detectable activity
MDC	minimum detectable concentration
NASA	National Aeronautics and Space Administration
NCRP	National Council on Radiation Protection and Measurements
PM	particulate matter: the term for a mixture of solid particles and liquid
	droplets found in the air
PM _{2.5}	fine inhalable particles, with diameters that are generally 2.5 micrometers
	(μm) and smaller
PM_{10}	inhalable particles, with diameters that are generally less than 10
	micrometers (µm)
PST	pacific standard time
RMHF	Radioactive Material Handling Facility
RRC	radionuclide reference concentration
SSFL	Santa Susana Field Laboratory
UTM	Universal Transverse Mercator

Imperial unit		SI unit
Radiatio	n activiti	es
1 Ci	=	$3.7 imes 10^{10} \mathrm{Bq}$
~27 pCi L ⁻¹	=	1 Bq L ⁻¹
~27 pCi m ⁻³	=	1 Bq m ⁻³
$\sim 27 \text{ pCi kg}^{-1}$	=	1 Bq kg^{-1}
Radiation d	ose quan	tities
100 rad	=	1 Gy
100 mrem	=	1 mSv
$100 \ \mu rem \ hr^{-1}$	=	$1 \ \mu Sv \ hr^{-1}$
Radiatio	n exposu	re
3.9×10^3 Roentgen	=	$1 \mathrm{C kg}^{-1}$

Unit Conversion Table

Scientific Notation (E-format)

Some of the numbers in this report are presented in scientific notation. Scientific notation is useful for presenting very large or very small numbers, or numbers that are different by many orders of magnitude. In scientific notation, numbers are expressed as the product of two terms; a digit term and an exponential term. For example, the number 723 expressed in scientific notation would be 7.23×10^2 where 7.23 is the digit term and 10^2 (10 raised to the power of 2 or 100) is the exponential term. The power is the number of places to shift the decimal point to present the number in long format. If the power is positive, then shift the decimal point to the right. If the power is negative, then shift the decimal point to the right. If the power is negative, then shift the decimal point to the right. If the power is negative, then shift the decimal point to the right. If the power is negative, then shift the decimal point to the right. If the power is negative, then shift the decimal point to the right. If the power is negative, then shift the decimal point to the right.

 $\begin{array}{rl} 4,231 &= 4.231 \times 10^3 \\ 1,230,000 &= 1.23 \times 10^6 \\ 0.0361 &= 3.61 \times 10^{-2} \end{array}$

Computers print scientific notation slightly different where the exponential term is reported as "E" followed by the power term. Thus, in the preceding example, 723 in computer scientific notation is 7.23E+02. Both forms of scientific notation are used in this report. Finally, for numbers between 1 and 10, the power term is zero because any number raised to the zero power is 1. Thus 7.23 expressed in scientific notation is 7.23×10^{0} or 7.23E+00 in computer scientific notation.

Common 1	Unit H	Prefixes
----------	--------	----------

р	pico	10^{-12}	k	kilo	10^{3}
μ	micro	10^{-6}	Μ	mega	10^{6}
m	milli	10^{-3}			

1. Introduction

The Woolsey Fire was reported to have ignited at 14:24 Pacific Standard Time (PST) on November 8, 2018, in the vicinity of the northern boundary of the Santa Susana Field Laboratory (SSFL) site (Citygate 2019) and burned quickly due to powerful Santa Ana winds. The Woolsey Fire was declared 100% contained on November 21, 2018 (CAL FIRE 2019). The objective of this work was to determine if any radioactive material from the SSFL was released to the atmosphere during the Woolsey Fire and transported downwind by the smoke plume to the surrounding communities. The progression of the Woolsey Fire on the SSFL was modeled to aid in the design of a soil-sampling plan that was subsequently carried out. Sampling locations were based on the modeled smoke plume and the areas that were predicted to be impacted by deposition of particulate matter if materials were released while the Woolsey Fire burned on the SSFL. These locations included downwind areas where atmospheric deposition of particulates was anticipated to be largest, as well as locations that were outside the deposition plume of the fire and remained unimpacted. The analysis draws upon environmental monitoring data taken before, during, and after the Woolsey Fire. These data were obtained from the Department of Energy (DOE), the National Aeronautics and Space Administration (NASA) and Boeing.

1.1. Brief Summary of SSFL History and Site Operations

The following summary was adapted from Sapere Consulting and Boeing (2005) and HydroGeologic (2011) and Boeing¹. The SSFL began operations in 1947 on land acquired by North American Aviation in the Simi Hills between Simi Valley and San Fernando Valley. The facility is located in southeastern Ventura County and borders Los Angeles County on its eastern boundary. The facility's mission initially was rocket engine testing. In 1955, part of Area IV, located in the northwestern corner of the site, was set aside for nuclear research and testing by Atomics International (Figure 1-1²). In 1984, Atomics International merged with Rocketdyne, which was purchased in 1996 by The Boeing Company. The remainder of the site was used by NASA and the Department of Defense for rocket and laser testing. Boeing owns Area IV, a portion of which was leased to the DOE and its predecessor agencies in the past for nuclear research activities.

¹ <u>https://www.boeing.com/principles/environment/santa-susana/extraordinary-past.page</u>

² Geographical information system data (GIS) and resources are documented in Appendix C.

Figure 1-1. Santa Susana Field Laboratory (SSFL) showing administrative areas and buffer zone. DOE operations were confined to Area IV.

The DOE and its predecessors operated the Energy Technology Engineering Center (ETEC) located in Area IV, which represented a group of facilities used for nuclear research and other experimental activities involving radioactive materials. From the mid-1950s until the mid-1980s, nuclear operations included the construction and operation of nuclear research reactors; the fabrication, disassembly, and examination of nuclear reactor fuel; and other radioactive materials research were sponsored by DOE and its predecessor agencies. Nuclear operations at ETEC included 10 nuclear research reactors and seven critical facilities. These facilities included the Hot Laboratory, the Nuclear Materials Development Facility, the Radioactive Materials Handling Facility, and various radioactive material storage areas.

Nuclear research in the ETEC facility of Area IV ended in 1988. Activities conducted by the ETEC have resulted in soil contamination in Area IV. The DOE is responsible for remediation of Area IV soils. As of 2020, some of the contaminated soils have been excavated and removed, and the majority of buildings have been decommissioned and removed³.

2. Progression and Modeling of the Woolsey Fire on the SSFL

The Woolsey Fire was reported to have begun on November 8, 2018, at 14:24 PST near a Southern California Edison substation located near the northern boundary of the SSFL (Figure 2-1) (Citygate 2019). A second suspected ignition point ~500 m (~550 yds) west of the first ignition

³ On May 19, 2020, DOE and DTSC entered into a Consent Order regarding the demolition and offsite disposal of ten (10) additional DOE buildings from this area of the SSFL.

point was also identified by CAL FIRE (2019). The fire quickly spread to the southwest pushed by strong Santa Ana winds reaching speeds of about 21 m s⁻¹ (47 mph), as measured at the SSFL. The fire spread off-site during the late afternoon/evening and was reported to be burning near the community of Oak Park at 9:00 PM the evening of November 8th (Citygate 2019). The fire jumped U.S. Route 101 between Liberty Canyon Road and Palo Comado Canyon Road overpass at 5:13 AM on the morning of November 9th (Citygate 2019). During the day of November 9, the fire spread rapidly westward (Citygate 2019). The fire also spread to portions of Thousand Oaks, Bell Canyon, West Lake Village, and West Hills during the day (Wildfire Today 2019). The total burned area of the SSFL was 2,268 acres, which encompassed most of the site excluding an east-west strip of land along the northern boundary. The Woolsey Fire was declared 100% contained on November 21 at 18:11 PST (CAL FIRE 2019). The suspected ignition points were provided in the CAL FIRE incident management report (CAL FIRE 2019) and were visually inspected by RAC during a visit to the area on June 4, 2019.

Figure 2-1. Region around the SSFL where the Woolsey Fire burned. Suspected ignition points identified by CAL FIRE are depicted by fire symbol. Fire outline was obtained from LA County (2019).

A timeline of the Woolsey Fire on the SSFL was constructed using different sources of information including meteorological data, video from webcams located at Boeing air monitoring stations and details regarding the fire progression (Figure 2-2 and Table 2.1). Ten regions were identified by date and time of burning. Initially, the fire burned toward the southwest from its ignition point and crossed the western boundary of the SSFL during the late afternoon/evening of November 8. During the late evening of November 8 to the early morning of November 9, a portion of the Woolsey Fire burned through Bell Canyon, which borders the southern boundary of SSFL (Citygate 2019). Around 22:00 PST on November 9, a portion of the fire then burned toward the north, and then back toward the west in the early morning of November 10. Areas of burning at the SSFL continued during November 10 and active burning ceased by the morning of November 11.

Figure 2-2. Map developed by RAC to show progression of fire on the SSFL. The fire was segregated into 10 regions numbered sequentially from starting region (1) on November 8 at 14:30 (rounded to the nearest half-hour) to ending region (10). Active fire burning on SSFL ceased on the early morning of November 11, but all regions smoldered for some time after active burning.

Table 2.1. Fire Regions on the SSFL, Area Burned, and Date and Time						
		Consumption rate				
Region ID	Area (m ²)	Area (acres)	$(acres hr^{-1})$	Date and time (PST)		
1	206502.7	51.0	34.0	11/08/2018, 1430–1600		
2	576969.7	142.6	35.6	11/08/2018, 1600–2000		
3	988611.0	244.3	244.3	11/08/2018, 2000–2100		
4	549912.6	135.9	135.9	11/08/2018, 2100–2200		
5	730145.4	180.4	180.4	11/08/2018 2200-2300		
6	1509361.7	373.0	124.3	11/09/2018 0000-0300		
7	1144709.9	282.9	40.4	11/09/2018 0300-1000		
8	1477440.3	365.1	73.0	11/09/2018 1000-1500		
9	373000.4	92.2	11.5	11/09/2018 1500-2300		
10	1620482.3	400.4	14.3	11/10/2018, 0000 to 11/11 0400		

2.1. Model Simulation of Fire

Each region of the Woolsey Fire on SSFL was modeled using the Fire Emission Production Simulator (FEPS) Version 1.1.0 (Anderson et al. 2004) computer program. This model takes as input the beginning and ending time of the fire, the area burned, fuel loading, relative humidity, wind speed, temperature, and atmospheric stability. Fuel loading is defined from the National Fire Danger Rating System 1978 Fuel Model Definitions (Deeming et al. 1977). Fuel model B was selected for the model because it represents California's mixed chaparral ecosystem that covers the SSFL. Dominant plant species in a mixed chaparral ecosystem include scrub oak, chaparral oak, and several species of ceanothus and manzanita (Ornduff 1974). The default fuel loads for this material are 11.5 tons per acre of shrub, 4.5 tons per acre of woody material, and 3.5 tons per acre of litter (Deeming et al. 1977).

The fuel condition was assumed to be very dry based on the meteorological conditions recorded at the Boeing and NASA meteorological tower. The FEPS default moisture percentages for very dry fuels are 4%, 6%, 8%, and 8% for the 1-hr, 10-hr, 100-hr, and 1,000-hr times, respectively. The FEPS default live material moisture percentage was 60%, and litter was 25%. Wind speed, relative humidity, and temperature obtained from the Boeing meteorological tower located in the northeast corner of the SSFL are presented in Figure 2-3, Figure 2-4, and Figure 2-5. Temperatures were relatively mild for Santa Ana conditions with a maximum of about 22° C (~72 ° F) recorded on November 10. Atmospheric stability was estimated for each hour based on Pasquill-Gifford classification using Turner's method (Turner 1964). High wind speeds and clear skies resulted in neutral stability conditions for most of the time during the fire.

The total area of each fire region on the SSFL was divided by the number of hours the region actively burned to provide the consumption rate that was entered into FEPS (i.e., acres per hour or tons of fuel per hour). Thus, Region 3, which burned during the highest recorded wind speeds, had the highest burn rate (see Table 2-1). Lower burn rates corresponded to periods of relatively light wind speeds, which were recorded on the evening of the November 9 and on the morning of November 10. This facilitates separate modeling of each region of the Woolsey Fire on the SSFL

and assumes linear growth of the Woolsey Fire across each region. The estimated emission rate for particulate matter with diameters less than 2.5 microns ($PM_{2.5}$) from all sources as a function of time (Figure 2-6) shows that the highest emission rates occurred in the late afternoon and evening of November 8 and the early morning of November 9 during the period of highest wind speeds.

The FEPS model produces emission estimates as a function of time for carbon monoxide, methane and $PM_{2.5}$. For this application, only the $PM_{2.5}$ was included in the atmospheric dispersion model because (1) measurements at the Boeing air samplers included $PM_{2.5}$ and PM_{10} (particulate matter with diameters less than 10 µm) and (2) radionuclides potentially present in vegetation and surface soil would be released with the burning of vegetation and the suspension of soil in a similar manner that particulate matter is released from a fire (Grogan et al. 2007). Historical vegetation measurements are discussed Section 4.1.1. Emissions and mass of vegetation burned for each region are summarized in Table 2-2.

Figure 2-3. Wind speed as a function of time measured at Boeing meteorological tower during Woolsey Fire.

Figure 2-4. Relative humidity as a function of time measured at Boeing meteorological tower during Woolsey Fire.

Figure 2-5. Temperature as a function of time measured at Boeing meteorological tower during Woolsey Fire.

burning on the SSFL.

Region	Total PM _{2.5} emissions (g)	Area (m ²)	Area (acres)	PM _{2.5} emissions per unit area (g m ⁻²)	Total biomass consumption (kg)
1	1.644E+07	206,503	51.03	7.962E+01	1.16E+06
2	5.298E+07	576,970	142.57	9.182E+01	3.67E+06
3	9.992E+07	988,611	244.29	1.011E+02	6.83E+06
4	5.722E+07	549,913	135.88	1.041E+02	3.90E+06
5	7.240E+07	730,145	180.42	9.915E+01	4.96E+06
6	1.526E+08	1,509,362	372.96	1.011E+02	1.04E+07
7	8.790E+07	1,144,710	282.86	7.679E+01	6.23E+06
8	8.550E+07	1,477,440	365.08	5.787E+01	6.37E+06
9	2.913E+07	373,000	92.17	7.810E+01	2.06E+06
10	8.895E+07	1,620,482	400.42	5.489E+01	6.70E+06
Total	7.431E+08	9,177,136	2268	N/A	3.794E+09

Table 2.2. FEPS-Predicted PM_{2.5} Emissions and Biomass Consumed during Woolsey Fire

3. Model Simulation of Atmospheric Transport of Particulate Matter Emitted from the Woolsey Fire on the SSFL

As noted in previous sections, if radionuclides were present and released in burning vegetation and suspended from the surface soil, the release, transport and deposition would be similar to particulate matter from the fire (Grogan et al. 2007). A fraction of the particulate matter that is released to the atmosphere will deposit from the plume on the soil as it is transported downwind. Likewise, radionuclides entrained in the plume will also deposit on the soil as they are transported downwind. Therefore, the purpose of the modeling was to estimate the deposition pattern of particulate matter from the Woolsey Fire while it burned on the SSFL.

The plume was modeled using the CALPUFF (Scire et al. 2000) modeling system Version 7. CALPUFF is an advanced non-steady-state meteorological and air quality modeling system used to compute particulate and gaseous concentrations of material emitted to the atmosphere. The model has been listed by the U.S. Environmental Protection Agency (EPA) as an approved model for assessing long range transport of pollutants and their impacts on Federal Class I areas⁴ and for certain near-field applications involving complex meteorological conditions. Version 7 is the EPA-approved version (Version 5.8) but includes additional enhancements. Enhancements in Version 7 include an interface between FEPS and CALPUFF so that the output from FEPS can be processed and used directly in a CALPUFF simulation. The CALPUFF modeling system consists of three primary codes: A meteorological model (CALMET), a complex terrain Lagrangian puff dispersion model (CALPUFF), and a post-processing program (CALPOST). There are also numerous preprocessors for developing input data that include surface and upper air meteorological data, terrain and land-use data, and the source-term data provided by FEPS.

3.1. Model Domain and Computational Grid

The total region that is modeled is referred to as the model domain and is illustrated in Figure 2-1. The model domain measures 33.1 km east-west by 27.5 km north-south covering an area of 910.25 km² (224,928 acres). Terrain in the SSLF region is characterized as complex and rugged. Elevations above mean sea level within the model domain ranged from 55 m (180 ft) to 917 m (3,008 ft), with a median elevation of 331 m (1,086 ft). The rugged terrain required a refined horizontal grid spacing of 100 m resulting in 332 east-west nodes and 276 north-south nodes for a total of 91,632 nodes. The 100-m grid spacing allowed spatial resolution of the steep terrain in the vicinity of the SSFL.

The vertical discretization of the atmosphere was segregated into 10 layers having upper bounds of 20 m, 40 m, 80 m, 160 m, 320 m, 640 m,1,200 m, 2,000 m, 3,000 m, and 4,000 m above ground surface.

3.2. Meteorological Data

Meteorological towers on the SSFL are illustrated in Figure 3-1. The tower operated by Boeing is located in the northeastern corner of the facility. NASA operates the tower near the center of the

⁴ Federal Class I areas include areas such as national parks and national wilderness areas. These areas are granted special air quality protections under Section <u>162(a)</u> of the federal Clean Air Act.

facility and DOE operates a tower in the northwest portion of the facility. The DOE tower was inoperable during the fire and thus provided no data in the model simulation. The Boeing and NASA towers remained operational during the fire and these data were the primary source of onsite meteorological data. Wind speed and direction were measured at 10 m or 15 m, which is optimal for surface measurements and generally recommended by EPA.

Figure 3-1. Location of the three meteorological towers at SSFL. Meteorological data were also collected at Boeing PM₁₀ sampling stations at the 2-m level.

Boeing also measures windspeed and direction at six particulate air monitoring stations that are illustrated in Figure 3-1 and labeled 1 through 6. These data are measured at the 2-m level, and supplemented data from the towers. Tower data was preferable because at the 2-m level, ground obstructions can influence the measurements.

Meteorological data from the Burbank and Van Nuys airports were also obtained and used in the simulation. Although these stations were outside the model domain, they provided required data on cloud cover and barometric pressure. Cloud cover and barometric pressure were not likely to differ from conditions at the SSFL.

CALMET also requires upper air sounding from the nearest upper air station. The nearest upper air station was at Vandenberg AFB and the twice daily sounding during the fire were obtained and used in the simulation.

Wind roses during the most active burning period of the fire at the two operational towers and the six Boeing air monitoring locations (Figure 3-2 and Figure 3-3) show winds predominantly out of the north-northeast to northeast direction; however, the Boeing main tower had winds predominately out of the east-northeast and Boeing station 4 had winds predominantly out of the

north. It is likely that terrain channeling influenced the wind direction at Boeing station 4. Wind speeds were highest at the NASA tower, which is at the highest elevation of all the stations. Wind speeds for the Boeing air monitoring stations (2-m measurement height) generally exhibited lower windspeeds than the meteorological towers. The Boeing main tower and Boeing monitoring station 1 are relatively close to each another but exhibited different predominant wind directions. This observation is likely due to different measurement heights and the chaotic nature of the winds during the fire.

Figure 3-2. Wind roses during the fire for Boeing and NASA towers and particulate monitors 1 and 2. Instruments on the towers were at 10 to 15-m height and meteorological instruments at the particulate monitors were at 2-m height.

Figure 3-3. Wind roses during the fire for particulate monitors 3, 4, 5, and 6. Meteorological instruments at the particulate monitors were at 2-m height.

3.3. CALMET and CALPUFF Technical Options

In general, default technical options and parameters were used in the CALMET and CALPUFF simulations. Model parameters and options with no default value or where the default was not selected are discussed below.

3.3.1. CALMET Bias Variable

The bias variable weights the surface and upper air readings in the wind field interpolation scheme. A bias value of -1 reduces the weight of the upper air stations by 100%, and a bias value of 1 reduces the weight of a surface station by 100%. Integer bias values range between -1 and 1 (i.e., a bias value of -0.3 weights the upper air observations by 30% and applies a weight of 70% to the surface stations). In this application a gradational approach was used (as recommended in CALPUFF) so that at the surface layer, the surface stations are weighted by 100%; in the uppermost

layer, the upper air station is weighted by 100%. Bias values for each layer from the surface to the highest layer were -1, -0.9, -0.8, -0.7, -0.4, 0.0, 0.7, 1.0, 1.0, 1.0.

3.3.2. CALMET Radius of Influence and Kinematic Effects

The CALMET default is to use all stations weighted by the distance squared. Because conditions can vary significantly across the SSFL, the varying radius of influence option was used in the simulation. For surface stations, all stations within 2 km of the grid point were used in the wind field interpolation. If no stations were found within 2 km, then the nearest station was used. For upper air stations, this value was 100 km because only one station was used. Radius of influence for terrain features was 0.5 km. That is, terrain features within 0.5 km of a grid point were included in the simulation. Observations within 0.5 km of a grid point were given equal weighting between the observation and the first-guess wind field as prescribed in CALMET.

Kinematic effects (the change in air properties due to the advection of air parcels) by default are not included in CALMET but were included in this simulation because of the strong and chaotic nature of Santa Ana winds that drove the fire. A sensitivity case was also run using only the CALMET defaults, which do not include kinematic effects or varying radius of influence. The difference between the simulations were minimal.

3.3.3. CALPUFF Dispersion Coefficient Option

The dispersion coefficients used in this CALPUFF simulation are determined from internally calculated micrometeorological variables that account for the physical and dynamic occurrences within a shallow stratum of air adjacent to the ground and provide a non-biased estimate of air concentrations. This represents the current state-of-the art in atmospheric dispersion modeling.

3.4. Predicted and Observed PM_{2.5} Concentrations

Boeing, NASA, and DOE operate a total of 14 PM_{10} monitors on the SSFL, and at three monitoring stations (Boeing stations 1 and 4, NASA station 2) there is also a $PM_{2.5}$ monitor (Figure 2-2, Table 3-1, Table 3-2, Table 3-3). These monitoring stations are discussed in Section 4. Particulate matter emission is one of the natural consequences of wildfires and the measurements show a clear increase in particulate matter emissions during the Woolsey Fire.

The CALPUFF simulation calculates the 24-hour average $PM_{2.5}$ concentration at each of the monitoring stations from $PM_{2.5}$ emitted while the Woolsey Fire burned in the different areas of the SSFL. Because the CALPUFF predicted concentration represents a net value that does not include the contribution from background, the average background $PM_{2.5}$ concentration (11.7 µg m⁻³) was added to the predicted concentration at each location for comparison to the measured concentration. This background $PM_{2.5}$ concentration was calculated from pre-fire data measured at Boeing stations 1 and 4 and NASA station 2 (see Table 4-1). The pre-fire Boeing data spanned from April 15, 2018 to the start of the Woolsey Fire and the pre-fire NASA data spanned from November 1, 2018 to the start of the Woolsey Fire. For stations that only measured PM_{10} , the $PM_{2.5}$ concentration was estimated using Equation 3-1 by dividing the PM_{10} concentration by the average PM_{10} to $PM_{2.5}$ ratio measured during the fire (2.05).

$$PM_{2.5} = \frac{PM_{10}}{2.05}$$
, for samplers with only PM₁₀ measurements (3-1)

	Boeing 1		Boeing 2 Boeing 3		Boeing 4		Boeing 5	Boeing 6
-	PM_{10}	PM _{2.5}	PM_{10}	PM_{10}	PM_{10}	PM _{2.5}	PM_{10}	PM_{10}
Date	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$
11/8/2018	46.1	7.9	76.2	46.0	52.8	19.5	48.8	614.9
11/9/2018	23.0	4.0	716.1	640.5	825.4	436.1	923.2	163.8
11/10/2018	54.0	43.7	71.1	63.0	57.4	48.8	71.4	42.5
11/11/2018	26.8	15.2	106.7	107.0	79.6	22.5	67.8	64.7

Table 3.1. Measured 24-hr Average PM₁₀ and PM_{2.5} Concentrations at Boeing Samplers

Table 3.2. Measured 24-hr Average PM₁₀ and PM_{2.5} Concentrations at NASA Samplers

	NASA 1	NAS	NASA 2		NASA 4
	PM_{10}	PM_{10}	PM _{2.5}	PM_{10}	PM_{10}
Date	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$
11/8/2018	57.2	52.2	16.4	53.2	56.6
11/9/2018	22.8	19.5	5.0	16.5	744.1
11/10/2018	32.4	87.3	75.6	59.0	52.6
11/11/2018	36.2	28.8	19.0	26.5	63.5

Table 3.3. Measured 24-hr Average PM₁₀ Concentrations at DOE Samplers

	DOE 1	DOE 2	DOE 3	DOE 4				
Data	PM_{10}	PM_{10}	PM ₁₀	PM_{10}				
Date	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$				
11/8/2018	55.1	66.1	51.3	a				
11/9/2018	23.5	30.4	30.4	а				
11/10/2018	21.9	21.5	25.2	а				
11/11/2018	30.3	28.8	30.4	а				
a. DOE Sampler 4 ceased operation on November 8 and was repaired on December 19.								

2018

Predicted and measured PM_{2.5} concentrations (Table 3-4, Table 3-5, Table 3-6) show that predicted concentrations are approximately within a factor of 2 of the observations (i.e. overpredict or underpredict the measured concentration by a factor of 2). Model predictions within a factor of 2 of the observations are generally considered acceptable model performance (Chang and Hanna 2004). Previous modeling studies of wildfires show that PM₁₀ was predicted generally within a factor of 2 of the observations (Grogan et al. 2007). The average observed value across all samplers was 63.8 μ g m⁻³, the average predicted value was 37.1 μ g m⁻³, and the P/O ratio of the averages was 0.58. However, the measured data may include not only PM_{2.5} generated by the Woolsey Fire burning on the SSFL, but also PM_{2.5} generated by the Woolsey Fire burning on land outside the SSFL boundary, whereas the modeled

concentrations only include PM_{2.5} generated by the Woolsey Fire burning on SSFL land. Consequently, some model underprediction would be expected.

Samplers (µg m)								
Date	Measured	Measured ^b	Measured ^b	Measured	Measured ^b	Measured ^b		
	Boeing 1	Boeing 2	Boeing 3	Boeing 4	Boeing 5	Boeing 6		
11/8/2018	7.9	37.2	22.4	19.5	23.8	299.9		
11/9/2018	4.0	338.6	301.8	436.1	450.3	79.9		
11/10/2018	43.7	24.1	20.1	48.8	34.8	20.7		
11/11/2018	15.2	41.4	41.6	22.5	33.1	31.6		
Average	17.7	110.3	96.5	131.7	135.5	108.0		
Average mea	sured over al	l samplers: 100	$0 \ \mu g \ m^{-3}$.					
Data	Predicted	Predicted	Predicted	Predicted	Predicted	Predicted		
Date	Boeing 1	Boeing 2	Boeing 3	Boeing 4	Boeing 5	Boeing 6		
11/8/2018	11.7	11.7	11.7	11.7	12.2	259.2		
11/9/2018	38.6	150.4	52.1	102.1	61.2	26.1		
11/10/2018	17.5	23.3	33.6	241.3	37.3	74.0		
11/11/2018	11.7	11.7	11.9	14.6	15.0	12.4		
Average	19.8	49.3	27.3	92.4	31.4	92.9		
Average prec	licted over all	samplers: 52.	$2 \ \mu g \ m^{-3}$.					
P/O ^a	1.1	0.45	0.28	0.70	0.23	0.86		
P/O of sample	ler average: 0	.52						
^{a.} Predicted-to-observed (measured) ratio of sampler time average.								

Table 3.4. Measured and Predicted Net 24-hr Average PM_{2.5} Concentrations at the Boeing Samplers ($u\sigma m^{-3}$)

^{b.} Calculated from PM₁₀ measurement based on Equation 3-1.

Samplers (µg m [°])								
Data	Measured ^b	Measured	Measured ^b	Measured ^b				
	NASA 1	NASA 2	NASA 3	 Measured^b NASA 4 27.7 363.8 25.7 31.0 112.1 Predicted NASA 4 12.0 39.7 110.9 24.0 46.7 0.42 				
11/8/18	28.0	16.4	26.0	27.7				
11/9/18	11.1	5.0	8.1	363.8				
11/10/18	15.8	75.6	28.8	25.7				
11/11/18	17.7	19.0	13.0	31.0				
Average	18.2	29.0	19.0	112.1				
Average measured over all samplers: 44.5 μg m	-3.							
Date	Predicted	Predicted	Predicted	Predicted				
	NASA 1	NASA 2	NASA 3	NASA 4				
11/8/18	11.7	11.7	11.7	12.0				
11/9/18	16.6	16.4	17.4	39.7				
11/10/18	25.4	18.4	17.4	110.9				
11/11/18	11.8	11.8	11.8	24.0				
Average	16.4	14.6	14.6	46.7				
Average predicted over all samplers: 23 $\mu g \ m^{-3}$								
P/O ^a	0.90	0.50	0.77	0.42				
P/O of sampler average: 0.52								
^{a.} Predicted-to-observed (measured) ratio of sampler	time average.							
b. Colorated from DM and construction of the color from 2.1								

Table 3.5. Measured and Predicted Net 24-hr Average PM_{2.5} Concentrations at the NASA Samplers (ug m⁻³)

^{*r*} Calculated from PM_{10} measurement based on Equation 3-1.

Samplers (µg m ⁻²)									
Date	Measured ^c DOE 1	Measured ^c DOE 2	Measured ^c DOE 3	Measured ^c DOE 4					
11/8/18	27.0	32.3	25.1	b					
11/9/18	11.5	14.9	14.9	b					
11/10/18	10.7	10.5	12.3	b					
11/11/18	14.8	14.1	14.9	b					
Average	16.0	18.0	16.8						
Average measure	ed over all samplers: 1	6.9 $\mu g m^{-3}$.							
Date	Predicted DOE 1	Predicted DOE 2	Predicted DOE 3	Predicted DOE 4					
11/8/18	11.7	11.7	11.8	b					
11/9/18	17.3	16.8	18.2	b					
11/10/18	73.7	40.9	71.9	b					
11/11/18	11.7	11.7	11.7	b					
Average	28.6	20.3	28.4						
Average predicte	ed over all samplers: 2	5.7 μ g m ⁻³ .							
P/O ^a	1.8	1.1	1.7						
P/O of sampler average: 1.5									

Table 3.6.	Measured	and	Predicted	Net	24-hr	Average	PM _{2.5}	Concentrat	tions a	it the	DOE
				Sam	nlers ((ug m ⁻³)					

^{a.} Predicted-to-observed (measured) ratio of sampler time average.

^{b.} DOE Sample 4 ceased operation on November 8 and was repaired on December 19, 2018. Because no corresponding measurements existed during the fire, no model predictions were made for DOE-4 ^{c.} Calculated from PM₁₀ measurement based on Equation 3-1.

The distribution of individual P/O ratios had an average value of 1.4 (standard deviation 1.90) and a median value of 0.69 indicating the distribution is closer to a lognormal distribution. The geometric mean P/O ratio was 0.80 and geometric standard deviation was 2.75.

Predicted ambient air concentrations of $PM_{2.5}$ above background are illustrated in Figure 3-4. The contours represent the average $PM_{2.5}$ concentration from November 8, 1400 to November 10, 2200 (57 hours). $PM_{2.5}$ plumes from areas burned on November 8 traveled southwest of SSFL, and then funneled down a north-south drainage skirting the community of Oak Park. Average concentrations were typically 60 to 90 µg m⁻³ in this uninhabited region but were lower in the residential areas (20 to 50 µg m⁻³) of Oak Park and Agoura Hills. A second $PM_{2.5}$ plume from SSFL that burned on November 9 and 10 traveled almost directly south down Bell Canyon, but at concentrations less than those at Oak Park and Agoura Hills. Concentrations of the SSFL derived $PM_{2.5}$ southwest of the model domain and in the community of Malibu would have been considerably lower due to atmospheric dispersion and dilution than depicted in Figure 3-4.

Figure 3-4. Average PM_{2.5} ambient air concentration from the fire burning across the SSFL from November 8, 1400 to November 10, 2200.

3.5. Deposition Pattern of Particulate Matter

Airborne particulate matter from the burning of vegetation and suspended from soil during the fire will eventually deposit on the land surface according to the dry deposition velocity. For this evaluation, the PM_{2.5} deposition across the model domain was scaled to PM₁₀ (using the previously discussed PM₁₀/PM_{2.5} ratio in Section 3.4) and plotted in the form of an isopleth map (Figure 3-5). This deposition pattern is from PM₁₀ generated only while the Woolsey Fire burned on the SSFL and does not include deposition from burned areas outside the SSFL boundaries. The deposition pattern generally follows the regional northeast winds at the time of the fire. Any particulate radionuclides on vegetation or in the surface soil that was potentially suspended during the fire would have followed a similar deposition pattern. Highest deposition of particulate matter from the fire outside the SSFL boundary was east of the community of Oak Park in a region of hilly uninhabited terrain. Other areas of enhanced deposition correspond to elevated terrain where the lofted plume intersected the ground surface. Deposition of SSFL derived PM₁₀ southwest of the model domain and in the community of Malibu (~23 km SSW of the SSFL) would have been considerably lower than depicted in Figure 3-5. For example, PM₁₀ deposition decreased from

 \sim 1.25 g m² at Oak Park to \sim 0.45 g m² at the southern edge of the model domain (\sim 10 km distance and reduction factor of 2.8). Malibu is about 10 km south of southern boundary of the model domain so we could expect a similar reduction in deposition resulting from further atmospheric dispersion and dilution. Thus, deposition in Malibu would be about a factor of 5 less than the deposition at Oak Park.

During the first day of the Woolsey Fire (November 8), particulate emissions and fire consumption rates on the SSFL were the greatest. A plot of the PM_{10} deposition from PM_{10} emissions on November 8 (Figure 3-6) shows a similar pattern and magnitude to Figure 3-5 and indicates that most of the total PM_{10} deposited was generated when the Woolsey Fire burned on the SSFL on November 8.

These isopleth maps served as a guide for defining a soil sampling program to determine if radionuclides located on the SSFL property were released when the Woolsey Fire burned on the site. If radionuclides located on the SSFL property were released during the Woolsey Fire, then their presence would be detected in surface soil within the deposition plume.

Figure 3-5. Isopleth map showing predicted total deposition of PM_{10} from Woolsey Fire burning on the SSFL from November 8 to November 11, 2018. Woolsey Fire outline is also shown.

Figure 3-6. Isopleth map showing predicted total deposition of PM_{10} from Woolsey Fire burning on the SSFL on November 8. Woolsey Fire outline is also shown.

3.5.1. Potential Dose that Soil Sampling is Capable of Detecting

Calculations were performed to determine the dose an individual would receive if radionuclides of SSFL origin were detected above background concentrations in surface soil. These calculations are important because they demonstrate the sensitivity in terms of individual dose that the soil sampling program is capable of detecting. This was done by first calculating the amount of radionuclide deposition that would be required to give a particular annual effective dose to an individual residing in the community of Oak Park. Three annual effective doses were evaluated: 0.01 mrem, 0.1 mrem, and 1.0 mrem. The annual effective dose limit above background from human sources recommended by the International Commission on Radiological Protection (ICRP), National Council on Radiation Protection and Measurements (NCRP) and implemented in DOE-Order 458.1 (DOE 2011b) is 100 mrem. The annual effective dose of 0.01 mrem, 0.1 mrem, and 1.0 mrem are a factor of 10,000, 1,000, and 100 times lower than the dose limit, respectively, and much lower than the annual effective dose, on average, to persons in the U.S. from natural background which is about 310 mrem (NCRP 2009). Relevant exposure pathways that were considered for the period included inhalation of radionuclides in the smoke plume and external exposure from radionuclides deposited on soil. The deposition amounts corresponding to the annual

²³⁹Pu equivalent to an annual effective dose of 0.1 mrem.

3.5.2. Comparison to DTSC Report

Shortly after the Woolsey Fire, the California Environmental Protection Agency (CalEPA) and Department of Toxic Substances Control (DTSC) produced an interim summary report evaluating impacts of the Woolsey Fire on surrounding communities (DTSC 2018). The report summarized sampling work done between November 8 and 30, 2018, to address community concerns about the possibility that the Woolsey Fire caused radionuclides and hazardous materials on-site to migrate into surrounding communities.

The report presented available soil/ash and air sampling data, mostly for hazardous materials, but also some radionuclide measurements and exposure rates. Appendix C of the report contained plots provided as part of the U.S. DOE Radiological Assistance Program and approved by the DOE Federal Radiological Monitoring and Assessment Center (FRMAC).

Based on different lines of evidence including modeling and measurements, the DTSC concluded that no radiation or hazardous materials from the SSFL were detected in communities following the Woolsey Fire.

3.5.3. Summary of Findings Based on Atmospheric Release and Transport Modeling

This section presented a model simulation of particulate matter ($PM_{2.5}$ and PM_{10}) generated from the Woolsey Fire burning on the SSFL and extended that simulation for radionuclides that might have been present on vegetation and in the soil. Predicted air concentrations of particulate matter were compared to measurements, and the average concentrations predicted during the fire were less than a factor of 1.7 different than the corresponding measured values. This is good agreement for such modeling. Scoping calculations were used to assess the likelihood of detecting releases from the SSFL in the soil. Based on the dispersion and deposition factors calculated for the Oak Park community located about 6 km southwest of SSFL, soil sampling data quality objectives would be sufficient to detect radionuclides released from the fire that would have resulted in a dose to a person living in the area of 0.1 mrem (one-thousand times less than the annual dose limit to the public).

4. Environmental Monitoring Data

Measurements of radionuclides in the environment before, during, and following the fire are an important aspect of understanding and quantifying potential impacts from the Woolsey Fire. It is well understood that all wildfires, even in the absence of anthropogenic contamination, release and mobilize radionuclides and other chemicals to the environment (Nance et al. 1993; Lambert et al. 1991; and Le Cloarec et al. 1995). The available air and soil data related to samples collected in the vicinity of the SSFL are described and evaluated in the following sections to investigate the potential for significant impacts at off-site locations.

4.1. SSFL Environmental Monitoring Program and Available Data

Routine environmental monitoring has been carried out at the SSFL since 1956 and has included analysis of air, vegetation, soil, surface water, and groundwater samples (AI 1960). Results of the environmental monitoring program have been reported in the annual site environmental reports (ASERs)⁵ (e.g., Boeing [2001]). Both Rocketdyne (SSFL 1996) and the EPA (HydroGeologic 2011) have collected samples and conducted analyses as part of site area and background level characterizations.

In April 2018, a baseline air monitoring program was developed at the SSFL to evaluate baseline conditions and provide a basis for evaluating any impacts from on-site remediation activities at the SSFL (NASA/Boeing/DOE 2017). Included in the program was monitoring for particulate matter, volatile organic compounds, and radionuclides. Data resulting from the baseline air monitoring program for samples collected before, during, and after the fire were obtained from DOE (North Wind 2019a, 2019b), NASA (2019), and Boeing (Rutherford 2019; Boeing 2018).

Figure 4-1 shows the locations of the Boeing, DOE, and NASA air samplers at SSFL along with the approximate area impacted by the Woolsey Fire. To characterize background concentrations of natural and anthropogenic radionuclides in soil from geological formations that underlie the SSFL, the EPA used the Bridal Peak, Lang Ranch, and Rocky Peak locations shown in Figure 4-1 (HydroGeologic 2011).

⁵ https://www.etec.energy.gov/Environmental and Health/ASER.php.

Figure 4-1. Map showing locations of baseline air samplers at the SSFL along with the area burned by the fire.

Radionuclide monitoring was established for a subset of the samplers, including the DOE samplers in Area IV and two Boeing samplers near the Area I Burn Pit that was used to burn materials no longer needed in the operations (samplers 4 and 5). Samples are analyzed according to the procedures described by NASA/Boeing/DOE (2017). After a minimum 120-hour holding time to allow the decay of short-lived radon and thoron daughters, the samples are simultaneously counted for gross alpha and beta activity with a low-background, thin-window, gas-flow proportional-counting system continually purged with P-10 argon/methane counting gas over a preset time interval. Individual filters are typically composited for quarterly isotopic analysis, and specific radionuclides are measured by gamma spectroscopy (⁷Be, ⁴⁰K, ⁵⁴Mn, ⁶⁰Co, ¹³⁷Cs), gas flow proportional counting (⁹⁰Sr, ²²⁸Ra), alpha spectroscopy (²¹⁰Po, ²²⁸Th, ²³⁰Th, ²³²Th, ²³⁴U, ²³⁵U, ²³⁸U, ²³⁸Pu, ^{239/240}Pu, ²⁴¹Am), and liquid scintillation techniques (²⁴¹Pu, ²²⁶Ra) (NASA/Boeing/DOE 2017).

Figure 4-2 shows the locations of each of the air samplers, with the DOE samplers positioned within Area IV in the northwest of the SSFL site, the Boeing samplers positioned along the east and south of the site, and the NASA samplers along the north of the site with an additional NASA sampler near the Area I Burn Pit.

Figure 4-2. Detailed map showing locations of Boeing, DOE, and NASA air samplers at SSFL.

The Boeing samplers 4 and 5 collect airborne particles on glass fiber (Type A/E) filters that are changed approximately twice a week and counted for gross alpha and beta activity. Both air monitors were operational during the Woolsey Fire. All six Boeing samplers measured PM_{10} , and measurements for $PM_{2.5}$ were made at samplers 1 and 4.

The DOE samplers 1 through 4 employed the same sampling and measurement protocol as described for the Boeing samplers. North Wind, Inc., operates the samplers for DOE. All four DOE samplers were operational during the Woolsey Fire. Damage to the electrical connections at sampler 4 caused it to be turned off on November 12 at 10:31 am (North Wind 2019a). The blower on sampler 1 failed due to heavy rain on December 17, and the sampler at station 4 was moved to station 1 on that same day. Samplers 1 through 3 were generally operational through the end of the year, but samplers 1 and 2 were shut off multiple times for a few hours because of heavy rain (North Wind 2019a).

Samples are also collected at two additional DOE samplers within the ETEC site, which encompasses most of the DOE facilities within Area IV. These two samplers (Area 20 and RMHF) are operated continuously with samples collected weekly on glass fiber filters. Both samplers were operational during the fire but did not operate after the fire because electric line power was lost. These two samplers operated sporadically through the end of 2018 using battery and generator power (North Wind 2019a).

The individual samples collected at the two Boeing stations and the six DOE stations during the fire were sent for isotopic analysis in addition to the routine gross alpha and gross beta analyses that were done.

4.2. Background Concentrations

An integral part of any thorough environmental data evaluation is understanding and quantifying radionuclide concentrations that would be present if the site or facility did not exist. This is referred to as background and is associated with naturally occurring decay chains, long-lived materials in the earth's crust, cosmogenic materials (e.g., uranium and thorium decay chain nuclides, ⁷Be, ⁴⁰K and other singly occurring radionuclides whose half-lives are long relative to the age of the earth) and anthropogenic radionuclides deposited world-wide as part of atmospheric weapons tests. Background concentrations vary spatially. The geology of an area affects the levels of many naturally occurring radionuclides. Concentrations that are significantly greater than background may indicate contributions from sources other than naturally occurring materials or atmospheric weapons testing fallout.

Background levels are typically established by measuring concentrations in environmental samples collected from locations that would not be affected by site operations (e.g., at sufficient distances and/or in upwind directions) and that are representative (i.e., same geologic materials since different rock types may exhibit different background levels) of the site environment, or in samples collected prior to the start of site operations. Background levels can then be compared to measurements at various locations around a facility to identify instances where measurements exhibit impact from the facility. A general description of background radionuclides found in soils is discussed first followed by background radionuclide concentrations in air and soil in the vicinity of SSFL.

4.2.1. Radionuclides Found in the Environment from Natural and Anthropogenic Sources

All soils contain naturally occurring radionuclides of primordial and cosmogenic origin. Primordial radionuclides originated during formation of the solar system four billion years ago. These radionuclides are long-lived and include the ²³⁸U (Figure 4-3), ²³²Th (Figure 4-4), and ²³⁵U (Figure 4-5) decay chains in addition to ⁴⁰K and other singly occurring radionuclides whose half-lives are long relative to the age of the earth. Plutonium-239 (which decays to ²³⁵U) and ²³⁷Np (Figure 4-6) were also formed during the solar system's formation, but their half-lives are relatively short compared to the age of the earth so they have decayed. Natural occurrence of ²³⁹Pu and ²³⁷Np has been observed in regions of high uranium concentrations and in natural nuclear reactors such as at Oklo in the central African state of Gabon (Choppin and Rydberg 1983) but these occurrences are not ubiquitous.

Figure 4-3. Uranium-238 decay scheme showing short-lived progeny that will be present alongside the parent. Uranium-238 and its progeny are naturally occurring radionuclides and present in most soils and rocks (from http://metadata.berkeley.edu/nuclear-forensics/Decay%20Chains.html).

Figure 4-4. Thorium-232 decay series showing short-lived progeny that will be present alongside the parent. Thorium-232 and its progeny are naturally occurring radionuclides and present in most soils and rocks (from http://metadata.berkeley.edu/nuclear-forensics/Decay%20Chains.html).

science > environment > community

Figure 4-5. Uranium-235 decay series showing short-lived progeny that will be present alongside the parent. Uranium-235 and its progeny are naturally occurring radionuclides and present in most soils and rocks (from http://metadata.berkeley.edu/nuclear-forensics/Decay%20Chains.html).

Figure 4-6. Neptunium-237 decay series showing short-lived progeny that will be present alongside the parent. Neptunium-237 and its progeny are radionuclides primarily derived from nuclear weapons fallout (from http://metadata.berkeley.edu/nuclear-forensics/Decay%20Chains.html).

Cosmogenic radionuclides are derived from reactions of cosmic radiation interacting with atoms in the atmosphere. Cosmogenic radionuclides include ¹⁴C, ³H, ⁷Be, ¹⁰Be, ²²Na, ²⁶Al, ³⁵S, ³⁶Cl, and ³⁹Cl (Choppin and Rydberg 1983) and many of these, such as ¹⁴C, are found in equilibrium in the biosphere in more or less constant concentrations.

Global fallout from above-ground nuclear weapons testing resulted in deposition on surface soil of actinides including ²³⁷Np, ²³⁸Pu, ^{239/240}Pu, ²⁴¹Pu, and ²⁴¹Am, and fission and activation products including ⁵⁵Fe, ⁹⁰Sr and ¹³⁷Cs (Efurd et al. 1982). Concentrations of fallout radionuclides are spatially variable and depend on the location latitude and altitude, proximity of aboveground tests, prevailing winds, precipitation patterns when these materials were airborne, soil chemistry, and erosion and other physical processes. Peak fallout from weapons testing occurred at latitudes between 40 and 50 degrees in both hemispheres and was greater in the northern hemisphere

(Whicker and Shultz 1982). Production of 90 Sr, 137 Cs, and 55 Fe per megaton of fission is approximately 0.1, 0.16, and 1.7×10^7 MCi (Whicker and Shultz 1982). Iron-55 has a much shorter half-life (2.9 years) and thus most of it would have decayed, whereas 90 Sr and 137 Cs have longer half-lives (28.8 and 30.17 years, respectively) and are still observed in detectable quantities in present-day soil. Cesium has a high soil-water partition coefficient and consequently is relatively immobile in soil, whereas 90 Sr is much more mobile and tends to leach from surface soils over the \sim 55 years that have elapsed since global atmospheric weapons testing fallout. Because of its relative immobility in soil and its large global fallout inventory, 137 Cs can readily be detected in surface soil today. In soil undisturbed since weapons testing fallout, 137 Cs concentrations are highest in the surface layer and decrease with depth. Thus, a 137 Cs depth profile where the highest concentrations are not near the surface would indicate the soil has been disturbed since weapons fallout.

Plutonium isotopes from nuclear weapons testing fallout and nuclear accidents can also be detected in soils. During 1992 – 1994, Ibrahim et al. (1997) measured ^{239/240}Pu in soil near the Rocky Flats Plant in Colorado, northwest of Denver. Plutonium that was attributed to global fallout (i.e., not of Rocky Flats origin) was determined from isotopic ratios of ²³⁹Pu/²⁴⁰Pu. In the 0–3 cm undisturbed surface soil layer, the ^{239/240}Pu concentration from global fallout was 0.054 pCi g⁻¹ and 50% of the total ^{239/240}Pu soil inventory resided in the surface (0–3 cm) layer. Piekarz and Komosa (2014) reported ratios of ²⁴¹Pu/²³⁹Pu in 0–5 cm soil from weapons testing was 4.6 in 1986. Accounting for decay of ²⁴¹Pu (14.35-year half-life) to the present results in a current ratio of about 0.93.

The April 1986 Chernobyl accident and the partial meltdown of the Fukushima-Daichi nuclear reactors and spent fuel in March 2011 emitted actinides and fission and activation products to the air that were later deposited onto surface soil. Immediately after the 1986 Chernobyl accident in Ukraine, the ²⁴¹Pu/²³⁹Pu ratio was as high as 94.8 in the 0–5 cm layer but varied widely (Piekarz and Komosa 2014). In deeper layers, the ratio was much smaller, indicating the deeper layers reflect fallout from weapons testing while the surface layer reflects recent deposits. Ratios of ²³⁸Pu/²³⁹Pu after the Chernobyl accident were 0.42 and 0.13 in the 0–5 cm and 5–10 cm layers, respectively. Fallout from Chernobyl was limited mainly to eastern and northern Europe. Small amounts of ¹³¹I and ¹³⁷Cs (<1% of weapons fallout) were detected in New York City (Feely et al. 1988) indicating appreciable quantities were not likely to have reached the western United States.

Following the Fukushima accident, the maximum estimated ²⁴¹Pu soil concentration in the 0– 5 cm layer in Japan was 0.11 pCi g⁻¹ (Yang et al. 2015)⁶. Concentrations measured by Zheng et al. (2012) in Japan after the Fukushima accident for ²⁴¹Pu and ²³⁹Pu were 0.94 pCi g⁻¹ and 0.0089 pCi g⁻¹, respectively in surface litter. In the 0–2 cm surface soil Zheng et al. (2012) measured 0.12 pCi g⁻¹ and 0.0016 pCi g⁻¹ for ²⁴¹Pu and ²³⁹Pu, respectively. Cesium-137 activity in the same samples was 38,270 pCi g⁻¹ in the surface litter and 310 pCi g⁻¹ in the surface soil. Iodine-131 and ¹³⁷Cs were detected in wet deposition in the western United States following the Fukushima accident (Wetherbee et al. 2012). At a location ~85 km east of SSFL in the San Gabriel Mountains ¹³⁴Cs and ¹³⁷Cs wet deposition amounts were 1,270 pCi m⁻² and 6,486 pCi m⁻², respectively (Wetherbee et al. 2011, 2012)⁷. It is therefore unlikely that the Fukushima accident contributed significantly to the

⁶ Calculated from 240 Bq m⁻² and assuming a bulk density in the 0–5 cm layer of 1.2 g cm⁻³.

⁷ These deposition amounts would equate to 0.035 pCi/g for 134 Cs and 0.18 pCi/g for 137 Cs assuming a 3 cm surface soil layer and a bulk density of 1.2 g cm⁻³.

plutonium activity present in the surface soils in Southern California, but possibly had some minor contribution to the ¹³⁴Cs and ¹³⁷Cs surface soil inventory.

4.2.2. Measured Background Radionuclides in Air on the SSFL

Background concentrations of radionuclides and particulates in air were estimated using available data for samples collected before the Woolsey Fire. The pre-fire data obtained from DOE (North Wind 2019a, 2019b), NASA (2019), and Boeing (Rutherford 2019; Boeing 2018) included gross alpha, gross beta, and PM₁₀ measurements (Table 4-1). Because of the relatively low environmental concentrations that were measured and the natural fluctuation in the instrument background, some concentrations are reported as negative. To avoid confusion and misleading values and because observations of negative concentrations in the environment are not feasible, the statistics shown in Table 4-1 are computed after substituting a value of 0 for all negative results (NRC 2010). The 5th and 95th percentile values are assumed to represent the range of background concentrations that could be expected. Additional data related to air samples collected and analyzed before the fire would be required to estimate isotope-specific background concentrations in air.

Statistic ^a	Gross alpha (µCi mL ⁻¹)		Gross beta (μ Ci mL ⁻¹)		PM ₁₀ (µg m ⁻³)				
	Boeing	DOE	Boeing	DOE	Boeing	NASA	DOE		
Mean	1.3E-15	6.5E-15	3.6E-14	8.5E-14	21.7	17.8	18.1		
Median	6.2E-16	6.0E-15	3.7E-14	5.7E-14	20.1	11.7	17.4		
Min	0	0	0	0	3.3	2.3	3.9		
Max	8.0E-15	2.1E-14	9.4E-14	3.3E-12	150.5	46.0	40.5		
5th	0	0	6.1E-15	0	8.5	3.9	6.9		
95th	4.2E-15	1.5E-14	6.4E-14	1.9E-13	38.8	39.8	32.8		
n	121	252	121	252	1218	28	116		
^{a.} Statistic	^{a.} Statistics computed after substituting a value of 0 for all negative results.								

 Table 4.1. Background Concentrations in Air Based on Pre-Fire Data from Boeing, DOE,

 and NASA

Because elevated radionuclide concentrations in soil primarily exist in Area IV (see Section 4.3.3), the DOE samplers in that area are less suitable for establishing background levels than are the Boeing samplers, which are more than a mile southeast of Area IV and less likely to be impacted by any elevated concentrations that might exist on-site. Differences between background concentrations in the different areas (i.e., Area IV and the area around Boeing 4 and 5 stations) may also be attributed to geologic variations in baseline soil concentrations in each geologic area. For example, the Santa Susana formation appears to have generally higher soil concentrations for most of the naturally occurring radionuclides, including isotopes of radium, uranium, and thorium (HydroGeologic 2011). This in turn could lead to higher gross alpha concentrations in suspended soil collected by the air samplers in Area IV. Greater levels of mechanical disturbances that result in the suspension of dust (such as vehicle traffic) could also result in higher air concentrations. The presence of impact related to past SSFL operations in Area IV soil also may contribute to localized higher gross alpha concentrations in air, although detectable impact appears to be sporadic and confined to isolated time periods based on recent data reported in the site's Annual Site Environmental Reports (ASERs) (e.g., Boeing 2005, 2006, 2008; North Wind 2015, 2018).

The range (i.e., 5^{th} and 95^{th} percentile values) of PM₁₀ background concentrations estimated using the Boeing data is similar to the range estimated using the NASA data as shown in Table 4-1.

4.2.3. Background Radionuclides in Soil on the SSFL

The EPA conducted a study to estimate the background concentrations of radionuclides on the SSFL (HydroGeologic 2011). Background included naturally occurring radionuclides and fallout radionuclides from weapons testing. The EPA developed background threshold values (BTVs) for the SSFL region based on samples collected in August, September, and November of 2009 and analyzed by Pace Analytical Services, Inc⁸. The maximum non-detect value was assumed as the BTV for radionuclides with fewer than five detections, and the 95% upper simultaneous limit (USL95) was used for the remaining radionuclides. The USL95 statistic represents the value such that all observations, not some proportion or percentile, from the established background data set will be less than or equal to USL95 with a confidence coefficient (CC) of 95% (HydroGeologic 2011).

Samples were collected from unimpacted radiological background reference areas (RBRAs) approximately 3 to 6 miles outside the SSFL property boundaries (see Figure 4-1). In addition, sampling at distance test locations (DTLs) was done, which confirmed that surface soils at the RBRAs had not been impacted by historical releases from SSFL. The RBRA sample locations were selected to represent the surface and subsurface soils overlying the two geologic formations present at the SSFL: the Chatsworth and Santa Susana formations. A single BTV was estimated for each radionuclide based on a combination of all the data from the different soil horizons and geologic formations that were sampled (Table 4.2). The soil horizon from 0 to 6 inches was used to characterize the surface soil background concentrations (HydroGeologic 2011). These background values were used to determine if there is evidence of impact on surface soil samples collected and analyzed as part of this work.

Soil sampling at Area IV identified radionuclides detected above the radionuclide reference concentration (RRC) as priority-1 radionuclides for cleanup activities (HydroGeologic 2012). The RRC is the maximum of either the BTV or the laboratory MDC plus 1.645 (e.g., 1-sigma) times the laboratory method uncertainty. These radionuclides are identified in Table 4.2. Radionuclides that were not identified as priority 1 had measured concentrations that were not significantly above background.

⁸ Pace Analytical Services, Inc, 1800 Elm Street SE, Minneapolis, MN 55414.

as Priority-1 Kadionuclides								
Radionuclide	$BTV (pCi g^{-1})$	Radionuclide	BTV (pCi g ⁻¹)					
Actinium-227	0.127	Plutonium-238	0.00425					
Actinium-228 ^b	2.3	Plutonium-239/240 ^b	0.0142					
Americium-241	0.0162	Plutonium-241	0.349					
Americium-243	0.0134	Plutonium-242 ^a	0.00246					
Antimony-125	0.321	Plutonium-244	0.00156					
Barium-137m ^a	0.183	Polonium-210 ^a	2.09					
Bismuth-212 ^b	2.04	Potassium-40	30.5					
Bismuth-214 ^b	1.57	Promethium-147	4.96					
Cadmium-113m ^d	2950	Protactinium-231	0.791					
Carbon-14	2.54	Radium-226°	1.88					
Cesium-134	0.03	Radium-228 ^{a,c}	2.3					
Cesium-137 ^b	0.193	Radon-220 ^a	2.27					
Cobalt-60 ^b	0.00556	Radon-222 ^a	1.61					
Curium-243/244	0.0147	Sodium-22	0.00787					
Curium-245/246	0.0162	Strontium-90 ^b	0.075					
Curium-248	0.0234	Technetium-99	0.368					
Europium-152 ^b	0.0169	Tellurium-125m ^a	0.0761					
Europium-154	0.0251	Thallium-208 ^b	0.923					
Europium-155	0.198	Thorium-228	3.67					
Holmium-166m	0.0365	Thorium-229	0.0462					
Iodine-129	2.08	Thorium-230 ^b	2.04					
Iron-55 ^a	5.08	Thorium-231 ^a	0.13					
Lead-210 ^a	2.07	Thorium-232 ^c	2.95					
Lead-212 ^b	2.67	Thorium-234 ^b	3.04					
Lead-214 ^b	1.68	Thulium-171	65.9					
Neptunium-236	0.0314	Tin-126	0.0049					
Neptunium-237	0.0109	Tritium (H-3) organic	7.38					
Neptunium-239	0.0427	Uranium-232 ^a	0.0565					
Nickel-59 ^b	0.344	Uranium-233/234 ^b	1.87					
Nickel-63	0.452	Uranium-235/236 ^b	0.13					
Niobium-94	0.0165	Uranium-238 ^b	1.68					
Plutonium-236	0.0184	Uranium-240 ^a	0.00156					

 Table 4.2. Radionuclide Background Threshold Values (BTV) and Radionuclides Identified

 as Priority-1 Radionuclides

^{a.} BTV taken from HydroGeologic (2011). All other BTVs taken from HydroGeologic (2012).

^{b.} Priority-1 radionuclides as defined in HydroGeologic (2012).

^{c.} Progeny of these parent radionuclides were defined as priority-1 radionuclides. The progeny does not exist in the environment without presence of the parent. Therefore, the parents were also defined as priority-1 radionuclides.

^{d.} The BTV for Cd-113m is extremely high because this radionuclide emits a very low energy beta and very few gammas making it difficult to detect.

4.3. Data Analysis

The following sections discuss air concentration measurements of particulate matter and radionuclides and how they were used to help quantify and better understand the impacts of the fire, along with limitations associated with the data. The particulate matter measurements made during the fire were used to identify which stations were impacted by the fire to the greatest extent and when those impacts were highest. The gross alpha and beta measurements were used to evaluate the relative impact of the fire on radioactivity levels in the air by making comparisons to measurements before and after the fire. The isotope-specific measurements were used to determine whether radionuclides that could be attributed to SSFL site operations were present in the smoke and particulate matter created and suspended during the fire.

4.3.1. Particulate Matter in Air

Particulate matter samples were collected at the Boeing, NASA, and DOE stations. Figure 4-7 shows daily average PM_{10} concentrations measured at the six Boeing stations, along with the 5th and 95th percentile background values estimated using the pre-fire measurement data (Table 4-1). The data are consistent with our understanding of the fire progression, with Boeing station 6 being impacted first on November 8 and Boeing stations 2 through 5 being impacted on November 9. Much lower PM_{10} concentrations, but still somewhat above pre-fire levels, are seen through the duration of the Woolsey Fire on November 13. Boeing station 1, at the north end of the site, shows little, if any, impact from the Woolsey Fire.

Figure 4-8 shows daily average PM_{10} concentrations measured at the four NASA stations, along with the 5th and 95th percentile background values estimated using the pre-fire measurement data (Table 4-1). These data are consistent with the fire progression and with the Boeing PM_{10} data. The three NASA stations at the north edge of the site show minimal impact from the fire and station 4 to the south shows impact on November 9.

The $PM_{2.5}$ concentrations measured at the Boeing 1 and 4 stations and the NASA 2 station are consistent with the PM_{10} data. The greatest impact to $PM_{2.5}$ levels is at the Boeing 4 station on November 9, with a slight impact at the Boeing 1 and NASA 2 stations on November 10.

Figure 4-9 shows daily average PM_{10} concentrations measured at the four DOE stations, along with the 5th and 95th percentile background values estimated using the pre-fire measurement data (Table 4-1). As noted previously, the DOE-4 station went offline shortly after the fire started because of damage to the electrical connection (North Wind 2019a). There was significantly less impact to the PM₁₀ concentrations at the three DOE operating samplers than to the most impacted Boeing and NASA samplers. This is not unexpected based on the location of the samplers relative to the Woolsey Fire boundary (Figure 4-2). The impact that is seen occurs on the first day of the Woolsey Fire (November 8) with little impact outside the range of expected background concentrations after that, which is consistent with our knowledge of the Woolsey Fire progression.

Figure 4-7. Time history of the daily average PM_{10} concentration measured at Boeing air sampling stations.

Figure 4-8. Time history of the daily average PM_{10} concentration measured at NASA air sampling stations.

Figure 4-9. Time history of the daily average PM₁₀ concentration measured at DOE air sampling stations.

4.3.2. Radionuclides in Air

Measurements of radionuclide concentrations in air before, during, and after the fire are used to determine whether there is evidence of any impact from the fire. These measurements also help to identify the potential source of any elevated concentrations, which would be expected to occur during any fire as a result of emission of naturally occurring radionuclides on vegetation and in the soil.

4.3.2.1. Gross Alpha and Gross Beta Measurements

Concentrations of gross alpha and gross beta in air were measured before, during, and after the Woolsey Fire by both Boeing and DOE. Figure 4-10 and Figure 4-11 show gross alpha concentrations in air measured by Boeing at stations 4 and 5, respectively, along with the 5th and 95th percentile background values estimated using the pre-fire measurement data (Table 4-1). Positive detections are identified as results greater than the detection limit and greater than the 2sigma counting error for the Boeing data, and greater than the detection limit for DOE data since counter error information was unavailable. Positive detections occurred at both stations for the samples collected during the fire, as well as one additional sampling period in June 2018 at station 4. The concentration measured during the fire at station 4 is similar to that measured in June 2018 and to levels measured by DOE at the samplers in Area IV (North Wind 2015, 2018), indicating that the levels measured at station 4 during the fire were not significantly elevated above levels measured before the fire.

Figure 4-10. Gross alpha concentrations in air measured by Boeing at monitoring station 4. Error bars represent the 2-sigma analytical uncertainty for the measured concentration.

Figure 4-11. Gross alpha concentrations in air measured by Boeing at monitoring station 5. Error bars represent the 2-sigma analytical uncertainty for the measured concentration.

Figure 4-12 and Figure 4-13 show gross beta concentrations in air measured by Boeing at stations 4 and 5. Positive detections occurred at both stations during the fire, although higher concentrations were measured both before and following the fire, indicating little if any impact by the fire on gross beta concentrations.

bars represent the 2-sigma analytical uncertainty for the measured concentration.

Figure 4-13. Gross beta concentrations in air measured by Boeing at monitoring station 5. Error bars represent the 2-sigma analytical uncertainty for the measured concentration.

Figure 4-14 shows gross alpha concentrations in air measured by DOE at the samplers maintained in Area IV. The samples collected during the fire all had concentrations less than the detection limit, although concentrations similar to those detected by Boeing at stations 4 and 5 had been detected at the DOE stations prior to the time of the fire.

uncertainty was not provided with DOE sample results.

Figure 4-15 shows gross beta concentrations in air measured by DOE at the samplers maintained in Area IV. The sample collected during the fire at DOE-2 had a concentration greater than the detection limit, while the other samplers had concentrations less than the detection limit. Significantly greater gross beta concentrations were measured before the fire at the Area 20 and RMHF stations during the October 30 to November 7 sampling period and after the fire at the DOE-1 and DOE-2 stations during the November 19 to 21 sampling period.

The detected and slightly elevated gross alpha concentrations for some of the samples collected by Boeing during the fire are consistent with increases that would be expected during any wildfire (Nance et al. 1993; Lambert et al. 1991; and Le Cloarec et al. 1995). Gross alpha was not detected by the DOE samplers. The fire did not have a measurable impact on gross beta concentrations at any of the stations.

While it is not clear why higher gross beta concentrations were measured at some of the DOE stations before and following the fire, the concentrations are all less than 2 times the reported detection limit, which suggests less overall precision in the measurements in general. The analytical uncertainty was not provided with the DOE sample results, so it is not possible to analyze these elevated measurements in any more detail or investigate why gross alpha was not detected by the DOE samplers. Shorter than normal sample collection time and/or analytical count time could both lead to increased uncertainty associated with the measurements and impact the ability to detect the generally low concentrations that were present.

4.3.2.2. Radioisotopic Measurements

The samples collected by Boeing and DOE during the fire were submitted for isotopic analysis in addition to the gross alpha and beta measurements discussed above. Positive detections were seen for naturally occurring radionuclides ²¹⁰Po, ²³⁰Th, and ²³²Th at Boeing stations 4 and 5, which would be expected to be seen for air samples collected during any fire. No anthropogenic radionuclides attributable to SSFL site operations were detected at either station.

The samples from the DOE stations had positive detections for naturally occurring radionuclides ²²⁸Ac, ²²⁸Ra, ²²⁶Ra, ²³⁰Th, ²³⁴U, ²³⁸U, and ²¹⁰Po, which again would be expected to be detected in samples collected during a fire. There were also detections of ²³⁹Pu and ⁹⁰Sr at the DOE-3 station and of ²³⁹Pu at the Area 20 station, based on the analytical laboratory analysis report. Because ²³⁹Pu and ⁹⁰Sr exist in Area IV soils, it is not surprising that concentrations of these nuclides would be detected in the air due to localized resuspension of soil from conditions and activities associated with the fire. Detections of both ²³⁹Pu and ⁹⁰Sr have occurred in the past at Area IV samplers (e.g., Boeing 2005, 2006, 2008; North Wind 2015, 2018), which again is not unexpected due to the proximity of the samplers to soil with elevated concentrations and potential suspension of dust during high wind events.

Plutonium-239 and ⁹⁰Sr were both detected at Area IV samplers during the fire at concentrations equal to or less than a factor of 2 greater than the detection limit. The concentrations were also approximately an order of magnitude or more below the Derived Concentration Standard (DCS) (DOE 2011a) for both radionuclides (Table 4-3). The DCS is based on a 100 mrem dose and assumes continuous exposure for one year, so the dose from breathing air with these concentrations during the period of the fire would be significantly less than 1 mrem at that location on the SSFL based on the concentrations measured during the fire and the maximum possible exposure duration that could have occurred.

	in Area IV								
		Air	Detection	Solubility					
Station	Nuclide	concentration	limit	class	DCS^{a}	% of DCS			
DOE-3	²³⁹ Pu	2.89E-15	2.43E-15	М	8.10E-14	3.6%			
	⁹⁰ Sr	3.43E-14	2.29E-14	М	1.00E-10	0.03%			
Area 20	²³⁹ Pu	8.73E-15	8.73E-15	М	8.10E-14	10.8%			
^{a.} Source: DOE (2011a).									

Table 4.3. Concentrations (µCi mL⁻¹) of ²³⁹Pu and ⁹⁰Sr Measured in Air by DOE Samplers in Area IV

4.3.3. Radionuclides in Soil

Extensive soil sampling for radionuclides has been performed in areas of the SSFL with known contamination in soil. A summary of the historical soil sampling based on data from SSFL is in Table 4-4.

 Table 4.4. Summary of Historical Detected Radionuclide Soil Concentrations Measured at the SSFL. Concentrations Include Natural Background and Weapons Fallout^a

Radionuclide	Minimum (pCi g ⁻¹)	Maximum (pCi g ⁻¹)	Average (pCi g ⁻¹)	п				
⁶⁰ Co	0.0001	2.6	0.0268	253				
¹³⁷ Cs	0.0001	196	0.460	4142				
¹⁵² Eu	0.0002	25.7	0.165	289				
^{239/240} Pu	0.0002	2.1	0.0122	1299				
²²⁶ Ra	0.19	18.8	1.27	701				
²²⁸ Ra	0.54	2.87	1.24	218				
⁹⁰ Sr	0.008	28.1	0.425	1109				
²³⁰ Th	0.07	6.4	0.918	3848				
²³² Th	0.063	3.7	1.17	4787				
²³⁴ U	0.22	9.6	0.888	688				
²³⁵ U	0.004	0.73	0.0618	811				
²³⁸ U	0.09	8.6	0.869	5019				
a. See Table 4-2 for the background concentrations estimated by EPA.								

The soil data at SSFL were compared to the EPA BTVs for ²³⁹Pu (Figure 4-16), ⁹⁰Sr (Figure 4-17) and ¹³⁷Cs (Figure 4-18) to examine the potential for impacts to off-site locations. Plutonium-239, ⁹⁰Sr, and ¹³⁷Cs were selected because of their occurrence at isolated locations in Area IV and because of the positive detections of ²³⁹Pu and ⁹⁰Sr by Area IV air monitors during the Woolsey Fire. There is a limited area within Area IV where concentrations of ²³⁹Pu, ⁹⁰Sr, and ¹³⁷Cs are above background.

Figure 4-16. Plutonium-239 concentrations in soil compared to the EPA Background Threshold Value (BTV) (HydroGeologic 2011) of 0.0134 pCi g⁻¹. Red dotted line represents fire boundary.

Figure 4-17. Strontium-90 concentrations in soil compared to the EPA Background Threshold Value (BTV) (HydroGeologic 2011) of 0.0735 pCi g⁻¹. Red dotted line represents fire boundary.

Figure 4-18. Cesium-137 concentrations in soil compared to the EPA Background Threshold Value (BTV) (HydroGeologic 2011) of 0.229 pCi g⁻¹. Red dotted line represents fire boundary.

A bounding estimate of the maximum potential radionuclide releases from the Woolsey Fire burning on the SSFL is to assume the entire radionuclide inventory in the surface soil, including background, was all released as particulates. The predicted hypothetical radionuclide concentration in 0-3 cm depth soil (*C*) from deposition in the Oak Park community (the region of highest off-site particulate matter deposition located about 6 km southwest of SSFL) is given by:

...

$$C = \frac{\left(C_{soil} \times \rho \times T \times A\right) \times \frac{\psi}{Q}}{\rho \times T} = C_{soil} A \times \frac{\psi}{Q}$$
(4-1)

where

C_{soil}	=	average soil concentration in Area IV of SSFL (pCi g ⁻¹)
ρ	=	bulk density $(1.0 \times 10^{-6} \text{ g m}^{-3})$
Т	=	surface layer thickness (m)
ψ/Q	=	deposition factor $(1.07 \times 10^{-9} \text{ m}^{-2})$, see Appendix E, Equation E-1)
Α	=	area of fire regions 1–5 (30,521,141 m ²).

The hypothetical concentration of ¹³⁷Cs, ⁹⁰Sr, ²³⁹Pu, and ²²⁶Ra in the 0–3 cm soil layer in the Oak Park community calculated using Equation 4-1 is either below the detection limit or is indistinguishable from background (Table 4-5). Equation 4-1 does not correct for background, and thus overestimates the actual SSFL-derived radionuclide inventory in soil. The results from applying Equation 4-1 demonstrate that the radionuclide inventory present on the SSFL is insufficient to produce a measurable impact in off-site soils.

A similar calculation can be made assuming the ¹³⁷Cs concentration in vegetation is at the MDC value of 0.046 pCi g⁻¹ wet weight (see Section 4.3.4) with a total wet weight biomass of 19.5 tons per acre (4.26 kg m⁻²) calculated from the fuel loads (see Section 2.1). The hypothetical inventory of ¹³⁷Cs that would be released assuming a concentration of 0.046 pCi g⁻¹ wet weight in vegetation is 6.11×10^8 pCi, which is a factor of 345 less than the release inventory given in Table 4-5. The hypothetical deposition amounts based on vegetation sampling would also be a factor of 345 less than the values in Table 4-5. When it is assumed that the entire radionuclide inventory in soil at the SSFL (including both background and anthropogenic radionuclides), was released to the atmosphere during the Woolsey Fire, the maximum dose to an individual at Oak Park would be much less than 0.01 mrem (Appendix E presents calculation details). The annual dose limit for members of the public (DOE 2011b) is 10,000 times higher than a dose of 0.01 mrem. The soil sampling program described in Section 5 supports the conclusion that radiological impacts (doses) related to the Woolsey Fire burning on the SSFL are indistinguishable from background.

Background BTV									
	Average SSFL	Average	Inventory	Predicted	0–3 cm				
	soil	SSFL soil	assumed	deposition at	concentration	Background			
Radio-	concentration	concentration	released from	Oak Park	at Oak Park	BTV			
nuclide	$(pCi g^{-1})$	$(pCi m^{-2})$	SSFL (pCi)	$(pCi m^{-2})$	$(pCi g^{-1})$	$(pCi g^{-1})$			
¹³⁷ Cs	4.6E-01	6.90E+04	2.11E+11	2.26E+02	7.52E-03	2.29E-01			
²³⁹ Pu	1.22E-2	1.83E+03	5.59E+09	5.99E+00	2.00E-04	1.34E-02			
⁹⁰ Sr	4.25E-01	6.38E+04	1.95E+11	2.09E+02	6.95E-03	7.35E-02			
²²⁶ Ra	1.24E+00	1.86E+05	5.68E+11	6.08E+02	2.03E-02	1.88E+00			

Table 4.5. Bounding Estimate of the Radionuclide Inventory in the 0–3 cm Layer on the SSFL, Predicted Deposition and Soil Concentration at Oak Park, and Comparison to Background BTV

4.3.4. Vegetation Monitoring

Vegetation was sampled from both on-site and off-site locations during the operational period from 1956 to 1989. Additional vegetation sampling occurred after 1989 during building demolition and site cleanup. Gross alpha and gross beta measurements were reported through 1985 (Moore 1986) and results for specific radionuclides were first reported in 1989 (Moore 1990). Most detected concentrations were for naturally occurring radionuclides (e.g., Rockwell International 1994, Table 5-16). Detections of anthropogenic radionuclides were limited to a measurement of 0.4 pCi g⁻¹ of ⁶⁰Co in 1990 (Rockwell International 1991), two detections each of ⁶⁰Co (maximum = 0.02 pCi g⁻¹) and ¹³⁷Cs (maximum = 0.10 pCi g⁻¹) in 1991 (Rockwell International 1992), a maximum detection of 0.021 pCi g⁻¹ of ¹³⁷Cs in 1993 (Rockwell International 1994), and a detection of 0.096 pCi g⁻¹ of ¹³⁷Cs in 1997 (Robinson 1998). The 1989 data are reported on a dry weight basis, and the 2000 results are given on a wet weight basis. Dry or wet weight is not denoted for

the detected concentrations in the 1990s. For a given sample, concentrations reported on a dry weight basis will be greater than those reported on a wet weight basis. The ¹³⁷Cs detected is assumed to originate from global fallout (see Section 4.2.1).

A comprehensive vegetation sampling program was conducted in Area IV at the SSFL in 2000 in response to wildfires that had burned on a number of DOE facilities including Los Alamos National Laboratory, Hanford Nuclear Facility, and Idaho National Laboratory (Boeing 2001). The sampling was conducted in response to concerns that radionuclides would be emitted to the air from burning vegetation in contaminated areas. A composite vegetation sample was taken at each of the 28 legacy radiological facilities in Area IV and two off-site locations. The only radionuclide detected in measurable quantities was naturally occurring ⁴⁰K with concentrations ranging from the minimum detectable concentration (0.52 pCi g⁻¹) to 3.50 pCi g⁻¹. No anthropogenic radionuclides were detected in either on-site or off-site vegetation. The average MDC for the anthropogenic radionuclides ⁶⁰Co, ¹³⁷Cs, and ¹⁵⁵Eu were 0.054 pCi g⁻¹, 0.046 pCi g⁻¹, and 0.069 pCi g⁻¹, respectively.

4.3.5. Summary of Findings from Environmental Data Collected before and during the Fire

Several important conclusions can be drawn based on the measurement data:

- Air samplers equipped to measure radionuclide concentrations were positioned at various onsite locations in the direction the plume traveled and in areas with soil concentrations above background by samplers operated by both Boeing and DOE
- The response of the PM₁₀ samplers is consistent with the fire progression. The unusually high mass loading corresponds to times at which smoke and suspended materials were known to be present, so it is clear that the samplers captured the impacts of the fire
- The fire had limited impact on gross alpha and beta concentrations measured in air. Some small increases in concentration were seen at the Boeing samplers with similar concentrations measured at different times before the fire.
- There was no impact of the fire observed at DOE samplers (i.e., concentrations measured before the fire are similar to or greater than concentrations measured during the fire)
- Detection of specific isotopes in air by DOE samplers in Area IV is likely due to their proximity to soil with concentrations above background in parts of Area IV within the defined fire boundary. Plutonium-239 and ⁹⁰Sr were the only anthropogenic nuclides detected in Area IV. All other detections in Area IV were for naturally occurring radionuclides.
- The concentrations of ²³⁹Pu and ⁹⁰Sr detected in air in Area IV were well below concentration standards defined for human health protection assuming continuous exposure over a long period of time. Any exposures associated with the Woolsey Fire would be of short duration occurring only during the fire.
- The Boeing stations did not detect SSFL-related nuclides, nor did the other four DOE Area IV samplers, indicating that the slightly elevated air concentrations were limited to the immediate vicinity around areas of Area IV with soil concentrations above background
- Historical monitoring of vegetation resulted in a few sporadic detections of ¹³⁷Cs and ⁶⁰Co, and a comprehensive vegetation survey in 2000 did not detect any anthropogenic radionuclides in either onsite or offsite vegetation.

A soil sampling plan was designed to further investigate whether radionuclides of potential SSFL-origin were measured in areas impacted by deposition of particulates and associated radionuclides that might have been suspended during the fire. The concentrations in these post-fire soil samples were compared to the background soil concentrations discussed in this section to determine if there was any evidence of concentrations greater than background in areas downwind from the fire where materials suspended from SSFL might have been deposited. Details related to the soil sampling plan are discussed in Section 5.

5. Soil Sampling

The purpose of off-site soil sampling was to determine whether radionuclides from the SSFL were carried off site during the Woolsey Fire and deposited in the surrounding communities. The scoping calculations presented in Section 4.3.3, confirmed that soil sample analyses would detect ¹³⁷Cs and ²³⁹Pu concentrations that could result in an effective dose of 0.1 mrem in Oak Park.

The approach used to identify the study sampling locations is described in Section 5.1. Quality assurance for the soil sampling and analysis program was implemented through the following elements:

- Establish written protocol for taking samples (Section 5.2)
- Establish chain-of-custody from sample collection to accredited analytical laboratory (Section 5.2.2)
- Sample duplicates (Section 5.2.1)
- Establish data quality objectives (Section 5.3.2)
- Data validation (Section 5.3).

5.1. Identifying Sampling Locations

Sampling locations were selected to include three distinct areas:

- Areas where potential deposition of any radionuclides from the Woolsey Fire burning on the SSFL would have been most likely to occur
- Areas on either side of the particulate deposition plume
- Areas upwind during the fire that would be unaffected. These samples were obtained to understand background concentrations of radionuclides.

A reconnaissance trip taken June 4 and 5, 2019, identified potential sampling locations based on their proximity to the particulate deposition plume and accessibility. Further reconnaissance was performed using Google Earth and Gaia GPS software to aid in identifying trail heads and access roads. Gaia GPS software typically has an accuracy ranging from ± 5 m to ± 10 m. This accuracy was more than adequate to identify sampling location coordinates. Land ownership for each potential sampling site was identified and written permissions were obtained to perform soil sampling.

Permissions were obtained for 16 sample locations, and these locations were sampled in August 2019. Figure 5-1 illustrates the location of each of the sampled sites with the modeled particulate deposition plume overlain. Sample location coordinates, ownership entity, and geologic formation are summarized in Table 5-1, and sampling location details are provided in Appendix A. Sampling was concentrated in the region of highest estimated particulate deposition (locations 13,

14, 15, 16, and 18) off the SSFL property. None of the locations have surface water that drains from SSFL.

Figure 5-1. Sampling locations overlaying model predicted PM_{10} deposition plume and the Woolsey Fire burn extent. Samples 1, 2, and 5 were at or near EPA background locations that were sampled in 2011 (HydroGeologic 2011).

						• • • • • • • • • • • • • • • • • • • •
Location	Latitude	Longitude (dd) ^b	UTM E	UTM N (m) ^d	Geologic formation	Ownership entity ^e
<u>inumic er</u>	(44)	(44)	(111)	(111)		
1	34.2681	118.6373	349268	3793094	Chatsworth formation	MRCA
2	34.2193	118.8143	332872	3787960	Santa Susana formation	City of Thousand Oaks
3	34.2109	118.7904	335057	3786985	Chatsworth formation	Conejo Open Space
4	34.2131	118.7767	336326	3787207	Chatsworth formation	RSRPD
5	34.2102	118.7694	336992	3786880	Chatsworth formation	MRCA
6	34.1898	118.7097	342461	3784525	Alluvium	MRCA
8	34.1793	118.6967	343640	3783338	Modelo formation	MRCA
9	34.1827	118.6565	344579	3783702	Modelo formation	MRCA
10	34.1779	118.6788	345286	3783159	Towsley formation	MRCA
11	34.1508	118.6160	351021	3780058	Modelo formation	MRCA
13	34.1875	118.7456	339145	3784317	Calabasas formation	NPS
14	34.1832	118.7416	339504	3783843	Modelo formation	NPS
15	34.1789	118.7442	339252	3783363	Modelo formation	NPS
16	34.1543	118.7482	338842	3780645	Modelo formation	MRCA
17	34.1319	118.7358	339945	3778145	Calabasas formation	MRCA
18	34.1829	118.7483	338888	3783814	Modelo formation	NPS

Table 5.1 Sample Location Coordinates, Geologic Formation, and Ownership Entity

^{a.} Location 7 was deleted because of its proximity to location 6. Location 12 was deleted because we did not receive permission from the property owner to take a sample.

^{b.} Decimal degrees.

^{c.} Universal Transverse Mercator East.

^{d.} Universal Transverse Mercator North.

^{e.} MRCA: Mountain Recreation and Conservation Agency; RSRPD: Rancho Simi Recreation and Parks District; NPS: National Park Service.

5.1.1. Sample Location Geology

The local geology is important because naturally occurring radionuclides vary in abundance depending on the source rock. Naturally occurring radionuclides include the uranium and thorium series, and potassium-40. The EPA background study (HydroGeologic 2011) focused on samples taken from the same geologic formations exposed on the SSFL because they reflect the same natural abundance of naturally occurring radionuclides. EPA background samples at Lang Ranch and Rocky Peak were taken from the Chatsworth formation. Background samples identified as Bridal Path were taken in the Santa Susana formation. For some radionuclides, notably ²³²Th, EPA noted higher concentrations in the Santa Susana formation compared to the Chatsworth formation. According to the EPA background study, about 80% of Area IV is underlain by the Chatsworth formation and the remainder is underlain by the Santa Susana formation. Most of the entire SSFL site, including the buffer areas, is underlain by the Chatsworth formation.

The oldest formation in the study area was the Cretaceous-age Chatsworth formation, which is composed of massive, thick-bedded medium to coarse-grained turbidite sandstone and well cemented conglomerate (Yerks and Campbell 2005). The conglomerate contains rounded clasts of porphyry and granitic rocks. The overlying early Eocene to late Paleocene-age Santa Susana formation consists of clay, shale, and fractured mud stone interbedded with fine- to mediumgrained sandstone and pebble conglomerate. There are also lenses of gray limestone concretions that are common in shale. Sample location 2 was located in the Santa Susana formation and samples 1, 3, 4, and 5 were located in the Chatsworth formation. Based on a U.S. Geologic Survey map of the region (Yerks and Campbell 2005), the Miocene-age Calabasas formation underlays sample locations 13 and 17, and the late Miocene age Modelo formation underlays samples 8, 9, 11, 14, 15, 16, 18. Sample location 13 may have been taken in a thin layer of Quaternary alluvium overlying the Calabasas formation based on the ¹³⁷Cs depth profile and its location in a canyon bottom. Sample location 10 is underlain by the early Pliocene/late Miocene age Towsley formation, which overlies and interfingers with the Modelo formation in the Santa Susana Mountains. Sample 6 was taken in Quaternary alluvium that overlies the Calabasas and Modelo formation. The Calabasas formation consists of interbedded clayey to silty sandstone and silty shale with local beds of sedimentary breccia. The Modelo formation lies unconformable above the Calabasas formation and consists of gray to brown, thin-bedded mudstone shale or siltstone with interbeds of very fineto coarse-grained sandstone. Samples 8 and 9 lie within a subdivision of the Modelo consisting primarily of sandstone, and sample 11 is in a subdivision of the Modelo formation consisting of diatomaceous shale. The Towsley formation is the youngest formation and consists of interbedded sandstone, mudstone, and conglomerate.

5.2. Sample Protocol

The sampling protocol was adapted from the protocol used by Webb (1996) and Rood et al. (2008) to detect plutonium and uranium deposition from atmospheric plumes. The protocol uses depth profiles to determine activity levels in layers starting from the surface and extending to depth. Webb (1996) and Rood et al. (2008) demonstrated that most of the radionuclide deposition (>80%) that occurred 30 to 60 years ago remains in the top 6 cm of soil. Less than a year elapsed between potential deposition and the sampling in the case of the Woolsey Fire. Therefore, the activity contained within each layer provides evidence of the source because if activity were deposited from the atmosphere recently, most of the activity will reside in the first layer. This sampling strategy assumes that the soil has remained undisturbed from the time of deposition and this was verified during sampling.

Samples were taken at locations undisturbed since the fire with no obvious evidence of surface runoff, erosion, or soil accumulation. Cesium-137 is often used to determine soil disturbance because above-ground nuclear weapons testing resulted in worldwide deposition of ¹³⁷Cs in measurable quantities on soils. Most of the cesium remains in the surface layer because it is relatively immobile due to its relatively high soil-water partitioning coefficient. Thus, a depth profile that shows most of the ¹³⁷Cs activity in the surface layer would indicate the soil has been undisturbed since weapons fallout. In this case, soil would only have to be undisturbed since the Woolsey Fire. Cesium-137 is also a radionuclide detected in SSFL soils and thus may have potentially been emitted during the fire. If ¹³⁷Cs were emitted from the SSFL during the Woolsey Fire, then the surface soil concentration would be statistically greater than that associated with weapons testing fallout, the concentration of ¹³⁷Cs in the surface soil would have to be higher than in the subsurface layers, *and* the sample would have to have been taken within the Woolsey Fire deposition plume (see Figure 3-5).

5.2.1. Sampling Procedure

Before field sampling commenced, chain of custody, sampling forms, and sampling labels were printed; a 25 cm \times 25 cm sampling frame was constructed; and a sample naming convention was established. Sample locations were numbered from 1 to 18 (with locations 7 and 12 subsequently omitted as discussed above). The sample ID was the sample location number followed by a depth designation letter (A=0–3 cm, B=3–6 cm, C=6–12 cm). Duplicate samples had "-D" after the depth designation letter. Sample split (sent to a different laboratory) was designated by "-S" following the depth designation letter. Sampling tools obtained included a steel scraper, hammer, chisel, trowel, small shovel, and funnel. Samples were placed in 2-liter sample bottles in the field, and the sample bottle was placed in a secondary plastic bag before shipment to the laboratory. A scintillometer was used to characterize the overall gamma exposure rate at each sampling site.

The excavation pit dimensions with the different layers are illustrated in Figure 5-2, and photos from sampling site 15 depicting the completed excavation pit is shown in Figure 5-3. The sampling procedure is outlined below:

- 1. At the sampling location, select an area that has no visible signs of disturbance from human or natural processes (i.e, water, burrowing animals).
- 2. Record the location of the sampling site using a GPS unit. The Gaia GPS iPhone application was used (<u>www.gaiagps.com</u>) for this task.
- 3. Carefully remove surface vegetation from the 25 cm \times 25 cm sampling area.
- 4. Take a gamma exposure reading using a scintillometer with a detachable probe several inches above the sampling surface. A measurement is taken for each layer sampled.
- 5. Excavate soil from the 25 cm × 25 cm area using hand tools by soil layer. The target depth layers are 0–3 cm, 3–6 cm, and 6–12 cm. For depth layers greater than 6 cm, halve the area so the volume of the sample is the same as the higher layers (1.875 L). The actual depths and number of layers may vary from these standard values depending on the nature of the sampling site. Careful excavation is required around features such as large rocks or roots.
- 6. Place sample on disposable plastic sheet. When excavation is complete, transfer sample from plastic sheet to 2 L, wide-mouth sample bottle (one per sample). Discard disposable plastic sheet in trash bag.
- 7. Label each sample with sample label affixed with clear tape to the bottle. The sample label has the sample ID followed by a letter to designate depth layers: A=0-3 cm, B=3-6 cm, and C=6-12 cm. A "-D" designation following the sample ID indicates a sampling duplicate. A "-S" designation following the sample ID indicates a sampling split.
- 8. To avoid mixing of soil between layers, wash sampling tools between samples using a water spray bottle and wipe with clean paper towels.
- 9. Photograph excavation pit from several angles to illustrate the appearance of the soil profile and the local setting.
- 10. Record the following information to document the process:
 - a. Date and time of sampling
 - b. General description of location
 - c. Length and width of each excavation layer
 - d. Scintillometer reading (counts per minute)

- e. Layer depth
- f. Coordinates of sampling site (decimal degrees latitude and longitude)
- g. Any other pertinent information.
- 11. Thoroughly clean sampling tools between sample sites using the spray bottle and paper towels.

The sample label and completed sample collection forms are presented in Appendix A. The scintillometer was a Ludlum model 3 (SN# 103609) rate meter with a detached 2.5 in \times 2.5 in NaI(Tl) probe. The meter was calibrated on January 30, 2019, and it was checked with a source of known activity included with the meter every morning before sampling commenced.

Figure 5-2. Depth profile sampling layers. Each layer contained 1,875 cm³ of soil. The area of the lowest sampled layer (6–12 cm) was halved to 25 cm × 12.5 cm. The 0–3-cm top layer would contain atmospheric deposition from Woolsey Fire and ¹³⁷Cs from weapons fallout.

Figure 5-3. Field sampling procedure. (1) The 25 cm \times 25 cm frame placed over soil surface before excavation and scintillometer reading made. (2) Surface layer (0–3 cm) excavation complete and sample bottled in 2 L container. (3) Excavation pit after all three layers were excavated.

5.2.2. Analytes and Laboratory Analysis

Samples were sent to GEL Laboratories, LLC., and one sample split was sent to TestAmerica, Inc. Chain-of-custody forms accompanied each shipment of samples. GEL Laboratories and TestAmerica have environmental accreditation in the State of California. Accreditation is used to verify that laboratories have an appropriate quality management system and can properly perform certain test methods (e.g., ANSI, ASTM, and ISO test methods) and calibration parameters according to their scopes of accreditation. GEL Laboratories and TestAmerica are participants in the DOE Mixed Analyte Performance Evaluation Program (MAPEP). The MAPEP provides quality assurance oversight for environmental analytical services by performing semiannual proficiency testing and evaluation of laboratories managed by the DOE, the U.S. Department of Defense, and other federal agencies; commercial analytical laboratories; and international analytical laboratories.

Radionuclides for which analysis was requested included all the radionuclides reported in the EPA background study (HydroGeologic 2011), with the exception of ^{113m}Cd, ²²²Rn, and ²²⁰Rn (Table 5-2). The GEL laboratory does not analyze for ^{113m}Cd because the analytical methods are incapable of detecting this radionuclide at concentrations that could conceivably be in soil. The ^{113m}Cd MDC in the EPA background study was 2,000 pCi g⁻¹. The radon isotopes were short half-life noble gases that are the progeny of ²²⁴Ra and ²²⁶Ra, respectively, and would not be present without the presence of their parent. Soil concentrations of radon isotopes in the environment depend on many factors because they readily diffuse in the gas phase. There were also a few radionuclides (²²⁵Ac, ²¹³Bi, ⁹⁰Y) that were included in the GEL results but were not included in the EPA background suite. Results were provided for 61 radionuclides. Radionuclides identified as

priority-1 radionuclides were those that were detected above background by EPA in Area IV (HydroGeologic 2012) and above the radionuclide reference concentration (RRC).

There are several omissions from priority-1 radionuclides defined in HydroGeologic (2012). Namely, they identified ²¹⁴Bi, ²¹⁴Pb, ²²⁸Ac, ²¹²Bi, ²¹²Pb, and ²⁰⁸Tl as priority-1 radionuclides, but these radionuclides have short half-lives (less than 12 hours) and do not exist in the environment without the presence of their parent. Bisimuth-214 and ²¹⁴Pb are progeny of ²²⁶Ra (²³⁸U decay chain), and ²²⁸Ac, ²¹²Bi, ²¹²Pb, and ²⁰⁸Tl are progeny of ²²⁸Ra (²³²Th decay chain). Thus, for completeness ²²⁶Ra, ²²⁸Ra, and ²³²Th were added to the priority-1 radionuclide list in this report.

5.2.3. Critical Levels and Minimum Detectable Concentrations

Two important quantities are necessary to evaluate analytical results, especially when concentrations are near background values. The first quantity is the *MDC*, which is derived from the minimum detectable activity (*MDA*). The *MDA* is defined as (Knoll 2010):

$$MDA = 4.653\sigma_{_{NB}} + 2.706 \tag{5-1}$$

where

 σ_{NB} = the 1-sigma (standard deviation) uncertainty in the background counts.

The *MDC* is calculated by factoring in percent recovery, detector efficiency, radiation yield per disintegration, and other factors specific to the analytical technique. The *MDA* is calculated such that there is less than a 5% probability that the activity detected in the sample is not actually present (i.e., false negative). The second quantity is the critical level (L_c), which is defined as (Knoll 2010):

$$L_c = 2.326\sigma_{NB} \tag{5-2}$$

The critical level (L_c) is the minimum activity in a sample such that the probability of a false positive (i.e., activity above background that is not actually present) will be no larger than 5%. The critical level can be converted to activity concentration in the same fashion as the *MDA*. Samples analyzed by the GEL laboratory were flagged as non-detect if the result was less than the *MDC*. Samples analyzed by TestAmerica laboratories were flagged as non-detect if the result was less than the L_c . A sample result greater than the *MDC* does not assure the activity present is from the radionuclide. Thus, samples were considered valid if they were (1) not flagged as non-detect, (2) the sample result exceeded the *MDC*, and (3) the sample result was greater than the 2-sigma uncertainty.

The *MDC* achieved by GEL varied between samples, but the requested *MDC* generally fell within the range of actual *MDCs* achieved. The *MDC* for samples analyzed by TestAmerica were lower for some radionuclides than those analyzed by GEL.

Concentrations							
	Average	Lowest	Highest	Requested			
	reported MDC	reported MDC	reported MDC	MDC			
Radionuclide	$(pCi g^{-1})$	$(pCi g^{-1})$	$(pCi g^{-1})$	$(pCi g^{-1})$	Comments		
Actinium-225	1.93	0.0102	4.58	N/A			
Actinium-227	0.08	0.0111	0.154	0.1			
					Priority-1		
Actinium-228	0.04	0.0074	0.074	0.05	radionuclide		
Americium-241	0.02	0.00599	0.0538	0.015			
Americium-243	0.03	0.0139	0.0699	0.02			
Antimony-125	0.03	0.00369	0.0557	0.03			
Barium-137m	0.01	0.00152	0.0213	0.007			
D: 1.010	0.1.4	0.000		0.00	Priority-1		
Bismuth-212	0.14	0.0206	0.283	0.08	radionuclide		
Bismuth-213	0.03	0.00438	0.0611	N/A			
Dismosth 214	0.02	0.00210	0.0200	0.02	Priority-1		
Distriction 112	0.02	0.00318	0.0388	0.02	National Internal		
Cadmium-113m	2 (2	2.20	2.02	2000	Not analyzed		
Carbon-14	2.63	2.28	3.03	3.5			
Cesium-134	0.02	0.00161	0.0367	0.04	Dui suites 1		
Cesium-137	0.01	0.00161	0.0225	0.007	Priority-1 radionuclide		
Cestum-157	0.01	0.00101	0.0225	0.007	Priority-1		
Cobalt-60	0.01	0.00157	0.023	0.007	radionuclide		
Curium-243/244	0.02	0.00516	0.0593	0.03			
Curium-245/246	0.01	0.00547	0.0329	0.03			
Curium-248	0.024	0.00424	0.0597	0.03			
					Priority-1		
Europium-152	0.03	0.0044	0.0576	0.03	radionuclide		
Europium-154	0.04	0.00449	0.0788	0.04			
Europium-155	0.04	0.00485	0.0743	0.05			
Holmium-166m	0.02	0.00243	0.0362	0.015			
Iodine-129	0.73	0.193	1.34	1.7			
Iron-55	3.69	2.14	4.99	5			
Lead-210	2.44	0.13	5.95	0.2			
					Priority-1		
Lead-212	0.02	0.00291	0.0348	0.03	radionuclide		
					Priority-1		
Lead-214	0.05	0.00375	0.135	0.02	radionuclide		
Neptunium-236	0.02	0.00279	0.0343	0.04			
Neptunium-237	0.02	0.00981	0.034	0.008			
Neptunium-239	0.1	0.0121	0.17	0.07			
			. .	a -	Priority-1		
Nickel-59	1.43	0.194	2.4	0.5	radionuclide		

 Table 5.2. Radionuclide List and Actual and Requested Minimum Detectable

 Concentrations

RISK ASSESSMENT CORPORATION science > environment > community

	Concentrations							
	Average	Lowest	Highest	Requested				
	reported MDC	reported MDC	c reported MDC	MDC				
Radionuclide	$(pCi g^{-1})$	$(pCi g^{-1})$	$(pCi g^{-1})$	$(pCi g^{-1})$	Comments			
Nickel-63	0.65	0.402	0.821	0.7				
Niobium-94	0.01	0.0014	0.0214	0.06				
Plutonium-236	0.02	0.00279	0.0343	0.03				
Plutonium-238	0.019	0.00468	0.0465	0.004				
Plutonium-					Priority-1			
239/240	0.02	0.0109	0.0343	0.005	radionuclide			
Plutonium-241	3.4	2.4	6.32	0.6				
Plutonium-242	0.02	0.0103	0.0341	0.005				
Plutonium-244	0.01	0.00558	0.0273	0.005				
Polonium-210	0.15	0.0415	0.397	0.2				
Potassium-40	0.09	0.0221	0.184	0.07				
Promethium-147	291.94	33.3	494	5				
Protactinium-231	0.14	0.0201	0.285	0.4				
					Priority-1			
Radium-226	0.02	0.00318	0.0388	0.07	radionuclide ^a			
D. 1: 229	0.04	0.0074	0.074	0.04	Priority-1			
Radium-228	0.04	0.0074	0.074	0.04	radionuclide			
Sodium-22	0.01	0.00161	0.0284	0.01	Duiquity 1			
Strontium-90	0.01	0.00742	0.015	0.015	radionuclide			
Technetium-99	0.62	0.409	0.802	0.3				
Tellurium-125m	5 53	0.376	9.89	0.006				
	5.55	0.570		0.000	Priority-1			
Thallium-208	0.01	0.00142	0.0209	0.01	radionuclide			
					Priority-1			
Thorium-228	0.15	0.0846	0.55	0.03	radionuclide ^a			
Thorium-229	0.12	0.0683	0.31	0.05				
					Priority-1			
Thorium-230	0.11	0.0471	0.355	0.03	radionuclide			
Thorium-231	0.2	0.0271	0.401	0.03	D: : 1			
Thomium 222	0.08	0.0193	0.220	0.01	Priority-1			
1110110111-232	0.08	0.0185	0.239	0.01	Priority_1			
Thorium-234	0.63	0.0685	1.35	0.2	radionuclide			
Thulium-171	11.19	1.14	24.5	10				
Tin-126	0.03	0.00352	0.0531	0.008				
Tritium	3.95	3.5	4.6	5				
Uranium-232	0.09	0.0476	0 249	015				
C1umum⁻∠J∠	0.07	0.0770	0.477	0.10	Priority-1			
Uranium-233/234	0.05	0.0298	0.12	0.05	radionuclide			

Table 5.2. Radionuclide List and	Actua	l and Requested	Minimum	Detectable

	Concentrations							
	Average	Lowest	Highest	Requested				
	reported MDC	reported MDC	reported MDC	MDC				
Radionuclide	$(pCi g^{-1})$	$(pCi g^{-1})$	$(pCi g^{-1})$	$(pCi g^{-1})$	Comments			
Uranium-235/236	0.04	0.0086	0.0813	0.05	Priority-1 radionuclide Priority-1			
Uranium-238	0.05	0.00933	0.117	0.03	radionuclide			
Yttrium-90	0.01	0.00742	0.015	N/A				
^{a.} See discussion in Section 5.3.2.								

 Table 5.2. Radionuclide List and Actual and Requested Minimum Detectable

 Concentrations

5.3. Evaluation of Sampling Results

Sample mass received by the GEL laboratory and the estimated bulk density are presented in Table 5-3. The bulk density was estimated by assuming every sample contained 1.875 L of soil. While every effort was made to collect 1.875 L in each sample, in practice, the sample volume varied among samples because of variable soil conditions. Radionuclide inventories can be calculated in each layer by multiplying the activity concentration (in pCi g^{-1}) by sample mass (g).

Sample		Top depth	Bottom depth	Mass	Bulk density
number	Location	(cm)	(cm)	(g)	$(g \text{ cm}^{-3})$
1 A	1	0	3	2520.9	1.34
1 A–D	1	0	3	2275.9	1.21
1 B	1	3	6	2542.1	1.36
1 B–D	1	3	6	2599.9	1.39
1 C	1	6	12	2386.1	1.27
1 C-D	1	6	12	2761.8	1.47
2 A	2	0	3	2004.2	1.07
2 B	2	3	6	1961.3	1.05
2 C	2	6	12	2158.6	1.15
3 A	3	0	3	2593.9	1.38
3 B	3	3	6	2585.6	1.38
3 C	3	6	12	1883.9	1.00
4 A	4	0	3	2241.1	1.20
4 B	4	3	6	2197.8	1.17
4 C	4	6	12	2009.7	1.07
5 A	5	0	3	2784.5	1.49
5 B	5	3	6	2136.2	1.14
5 C	5	6	12	2136.9	1.14
6 A	6	0	3	1786.8	0.95
6 B	6	3	6	1897.7	1.01

 Table 5.3. Sample Depths, Mass, and Estimated Bulk Density

RISK ASSESSMENT CORPORATION science > environment > community

Table 5.3. Sample Depths, Mass, and Estimated Bulk Density					
Sample		Top depth	Bottom depth	Mass	Bulk density
number	Location	(cm)	(cm)	(g)	$(g \text{ cm}^{-3})$
6 C	6	6	12	2047.1	1.09
8 A	8	0	3	2372.3	1.27
8 B	8	3	6	2393.1	1.28
8 C	8	6	12	2202.5	1.17
9 A	9	0	3	2174.9	1.16
9 B	9	3	6	2298.4	1.23
9 C	9	6	12	2140.6	1.14
10 A	10	0	3	1426.8	0.76
10 B	10	3	6	1379.4	0.74
10 C	10	6	12	1537.8	0.82
11 A	11	0	3	1615.8	0.86
11 B	11	3	6	1625.8	0.87
11 C	11	6	12	1883.9	1.00
13 A	13	0	3	1670.3	0.89
13 B	13	3	6	1624.5	0.87
13 C	13	6	12	1805.9	0.96
14 A	14	0	3	2106.1	1.12
14 B	14	3	6	2091.2	1.12
14 C	14	6	12	2274.6	1.21
15 A	15	0	3	1927.4	1.03
15 B	15	3	6	2010.4	1.07
15 C	15	6	12	2058.7	1.10
16 A	16	0	3	2795.3	1.49
16 B	16	3	6	2726.8	1.45
16 C	16	6	12	2760.9	1.47
17 A	17	0	3	1651.2	0.88
17 B	17	3	6	1714.0	0.91
17 C	17	6	12	1687.6	0.90
18 A	18	0	3	1651.2	0.88
18 B	18	3	6	1714.0	0.91
18 C	18	6	12	1687.6	0.90

T 11 - 2 6 ъ . . 1 1 D ... • ,

A complete tabulation of results is presented in Appendix B. There were 28 radionuclides that were positively detected (above the MDC and above the 2-sigma uncertainty) by the GEL laboratory in at least one soil sample. Radionuclides detected were naturally occurring or of weapons fallout origin. Detected radionuclides in the 16 locations plus the sample duplicate taken at sample location 1 are listed in Table 5.4. For comparison, the 12-cm weighted average concentration was computed and compared to the BTV value. The BTV value was based on a soil
sampling depth of 6 inches (15 cm). Therefore, it was inappropriate to compare the soil concentration from individual layers (0–3, 3–6, and 6–12 cm) with the BTV; instead, the weighted average concentration (C_{wt}) was compared. The weighted average concentration was calculated using Equation 5-3:

$$C_{wt} = \frac{C_3 \times 3 \text{ cm} + C_6 \times 3 \text{ cm} + C_{12} \times 6 \text{ cm}}{12 \text{ cm}}$$
(5-3)

where

C_3	=	radionuclide soil concentration in $0-3$ cm layer (pCi g ⁻¹)
C_6	=	radionuclide soil concentration in $3-6$ cm layer (pCi g ⁻¹)
C_{12}	=	radionuclide soil concentration in 6–12 cm layer (pCi g ⁻¹).

For radionuclides that had a non-detect result in one or two layers at a given location, the reported value was used in the weighted average concentration and the concentration was bolded and in decimal format in Table 5.4. Concentrations less than zero were reported as zero. Ten radionuclides had weighted average concentrations that exceeded the BTV value as indicated by a ratio value greater than 1.0 in the last column of Table 5.4. Of these 10 radionuclides, only five (²³⁰Th, ²³⁴Th, ²³⁴U, ²³⁵U, and ²³⁸U) were identified as priority-1 radionuclides, and all were naturally occurring.

Table 5.4. Sample Results with Positive Detections, the Weighted Average Concentration, and Comparison of the Weighted Average Concentration with the BTV^{a, b}

					12-cm		
					weighted		
					average		
		0–3 cm	3–6 cm	6–12 cm	concentration	BTV	Ratio to
Radionuclide	Location ^c	$(pCi g^{-1})$	(pCi g ⁻¹)	BTV			
Ac-228	1	1.60E+00	1.66E+00	1.72E+00	1.67E+00	2.30E+00	0.73
Ac-228	10	3.92E-01	4.26E-01	4.95E-01	4.52E-01	2.30E+00	0.20
Ac-228	11	1.37E+00	1.51E+00	1.50E+00	1.47E+00	2.30E+00	0.64
Ac-228	13	1.25E+00	1.18E+00	1.15E+00	1.18E+00	2.30E+00	0.51
Ac-228	14	1.05E+00	9.94E-01	1.06E+00	1.04E+00	2.30E+00	0.45
Ac-228	15	1.02E+00	1.01E+00	1.08E+00	1.05E+00	2.30E+00	0.46
Ac-228	16	1.03E+00	9.22E-01	9.61E-01	9.69E-01	2.30E+00	0.42
Ac-228	17	3.89E-01	3.72E-01	4.07E-01	3.94E-01	2.30E+00	0.17
Ac-228	18	1.22E+00	1.24E+00	1.26E+00	1.25E+00	2.30E+00	0.54
Ac-228	2	1.71E+00	1.72E+00	1.76E+00	1.74E+00	2.30E+00	0.76
Ac-228	3	1.71E+00	1.86E+00	1.91E+00	1.85E+00	2.30E+00	0.80
Ac-228	4	1.42E+00	1.50E+00	1.60E+00	1.53E+00	2.30E+00	0.67
Ac-228	5	1.73E+00	1.99E+00	1.55E+00	1.71E+00	2.30E+00	0.74
Ac-228	6	6.31E-01	8.96E-01	1.19E+00	9.77E-01	2.30E+00	0.42
Ac-228	8	9.21E-01	9.61E-01	1.07E+00	1.01E+00	2.30E+00	0.44
Ac-228	9	8.66E-01	9.55E-01	9.38E-01	9.24E-01	2.30E+00	0.40
Am-241	2	0.0131	1.49E-02	0.00726	1.06E-02	1.62E-02	0.66
Ba-137m	1	8.07E-02	3.68E-02	2.54E-02	4.21E-02	1.83E-01	0.23
Ba-137m	10	1.24E-01	1.15E-01	1.00E-01	1.10E-01	1.83E-01	0.60
Ba-137m	11	3.44E-02	1.63E-02	1.80E-02	2.17E-02	1.83E-01	0.12
Ba-137m	13	7.66E-02	7.82E-02	6.67E-02	7.21E-02	1.83E-01	0.39
Ba-137m	14	9.01E-02	6.68E-02	4.90E-02	6.37E-02	1.83E-01	0.35
Ba-137m	15	8.06E-02	7.93E-02	6.52E-02	7.26E-02	1.83E-01	0.40
Ba-137m	16	7.07E-02	5.54E-02	3.92E-02	5.11E-02	1.83E-01	0.28
Ba-137m	17	5.07E-02	2.88E-02	2.36E-02	3.17E-02	1.83E-01	0.17
Ba-137m	18	7.94E-02	8.28E-02	7.86E-02	7.99E-02	1.83E-01	0.44

					12-cm		
					weighted		
					average		
		0–3 cm	3–6 cm	6–12 cm	concentration	BTV	Ratio to
Radionuclide	Location ^c	(pCi g ⁻¹)	(pCi g ⁻¹)	(pCi g ⁻¹)	$(pCi g^{-1})$	$(pCi g^{-1})$	BTV
Ba-137m	2	5.75E-02	6.80E-02	4.44E-02	5.36E-02	1.83E-01	0.29
Ba-137m	3	1.00E-01	4.79E-02	0.0113	4.26E-02	1.83E-01	0.23
Ba-137m	4	5.66E-02	2.63E-02	1.18E-02	2.66E-02	1.83E-01	0.15
Ba-137m	5	2.90E-01	1.04E-01	3.36E-02	1.15E-01	1.83E-01	0.63
Ba-137m	6	2 99E-02	6 18E-02	8 30E-02	6 44E-02	1.83E-01	0.35
Ba-137m	8	6.24E-02	4 36E-02	3.08E-02	4 19F-02	1.83E-01	0.23
Ba-137m	9	1 38E-01	8 10E-02	5.65E-02	8 30E-02	1.83E-01	0.25
$\mathbf{B}_{i} = 157 \mathrm{m}$	1	1.50E-01	1.74E+00	1.78E+00	1.78E+00	$2.04E\pm00$	0.45
Bi 212	10	3 75E 01	1.74E+00 4.76E-01	1.78E+00	4.56E+00	2.04E+00 2.04E+00	0.87
DI-212 D: 212	10	3.75E-01 1 21E+00	4.70E-01	4.80E-01	4.50E-01	2.04E+00	0.22
DI-212 D: 212	11	$1.31E \pm 00$	$1.49E \pm 00$	$1.32E \pm 00$	$1.40E\pm00$	2.04E±00	0.72
B1-212	13	1.34E+00	1.3/E+00	1.30E+00	1.33E+00	2.04E+00	0.65
B1-212	14	1.11E+00	9.84E-01	1.14E+00	1.09E+00	2.04E+00	0.54
B1-212	15	1.23E+00	1.14E+00	1.13E+00	1.16E+00	2.04E+00	0.57
B1-212	16	1.02E+00	1.06E+00	8.89E-01	9.65E-01	2.04E+00	0.47
Bi-212	17	4.06E-01	3.85E-01	3.43E-01	3.69E-01	2.04E+00	0.18
Bi-212	18	1.34E+00	1.24E+00	1.46E+00	1.38E+00	2.04E+00	0.67
Bi-212	2	1.83E+00	2.06E+00	1.67E+00	1.81E+00	2.04E+00	0.89
Bi-212	3	1.80E+00	1.86E+00	1.81E+00	1.82E+00	2.04E+00	0.89
Bi-212	4	1.50E+00	1.53E+00	1.59E+00	1.55E+00	2.04E+00	0.76
Bi-212	5	1.86E+00	1.93E+00	1.97E+00	1.93E+00	2.04E+00	0.95
Bi-212	6	5.68E-01	8.97E-01	1.36E+00	1.05E+00	2.04E+00	0.51
Bi-212	8	9.95E-01	1.08E+00	1.05E+00	1.04E+00	2.04E+00	0.51
Bi-212	9	9.42E-01	1.18E+00	8.90E-01	9.76E-01	2.04E+00	0.48
Cs-137	1	8.51E-02	3.89E-02	2.68E-02	4.44E-02	1.93E-01	0.23
Cs-137	10	1 31E-01	1 22E-01	1.06E-01	1 16E-01	1 93E-01	0.60
Cs-137	11	3.63E-02	1.22E 01	1.00E-01	2 29E-02	1.93E-01	0.12
Cs-137	13	8.09E-02	8 26E-02	7.05E-02	7.61E-02	1.93E-01	0.12
$C_{s} = 137$	14	0.07E-02	7.06E.02	5.18E.02	6.74E.02	1.03E-01	0.35
$C_{s} = 137$	15	9.52E-02 8.52E-02	8 38E 02	6 80E 02	7.67E.02	1.03E-01	0.35
$C_{3} = 137$	15	0.52E-02	5.96E 02	0.87E-02	7.07E-02	1.02E 01	0.40
$C_{2} = 127$	10	7.47E-02	3.80E-02	4.14E-02	3.40E-02	1.93E-01	0.28
Cs-137	17	3.33E-02 8.20E-02	5.05E-02 8.75E-02	2.30E-02	5.55E-02 8.44E-02	1.93E-01	0.17
Cs-137	18	8.39E-02	8./3E-02	8.30E-02	8.44E-02	1.95E-01	0.44
Cs-137	2	6.08E-02	7.18E-02	4.69E-02	5.66E-02	1.93E-01	0.29
Cs-13/	3	1.06E-01	5.06E-02	0.012	4.52E-02	1.93E-01	0.23
Cs-13/	4	5.98E-02	2./8E-02	1.25E-02	2.82E-02	1.93E-01	0.15
Cs-13/	2	3.06E-01	1.09E-01	3.55E-02	1.22E-01	1.93E-01	0.63
Cs-137	6	3.16E-02	6.53E-02	8.77E-02	6.81E-02	1.93E-01	0.35
Cs-137	8	6.60E-02	4.61E-02	3.25E-02	4.43E-02	1.93E-01	0.23
Cs-137	9	1.45E-01	8.55E-02	5.97E-02	8.75E-02	1.93E-01	0.45
Fe-55	10	0.761	3.35E+00	4.17E+00	3.11E+00	5.08E+00	0.61
Fe-55	6	1.23	2.34	6.63E+00	4.21E+00	5.08E+00	0.83
Fe-55	8	1.61	5.64E+00	3.35E+00	3.49E+00	5.08E+00	0.69
K-40	1	2.28E+01	2.35E+01	2.26E+01	2.29E+01	3.05E+01	0.75
K-40	10	1.25E+01	1.35E+01	1.32E+01	1.31E+01	3.05E+01	0.43
K-40	11	2.26E+01	2.36E+01	2.33E+01	2.32E+01	3.05E+01	0.76
K-40	13	2.34E+01	2.23E+01	2.01E+01	2.15E+01	3.05E+01	0.70
K-40	14	1.48E+01	1.55E+01	1.59E+01	1.55E+01	3.05E+01	0.51
K-40	15	2.55E+01	2.32E+01	2.48E+01	2.46E+01	3.05E+01	0.81
K-40	16	1.84E+01	1.81E+01	1.81E+01	1.82E+01	3.05E+01	0.60
K-40	17	2.39E+01	2.44E+01	2.70E+01	2.56E+01	3.05E+01	0.84
K-40	18	1.53E+01	1.53E+01	1.42E+01	1.48E+01	3.05E+01	0.48
K-40	2	2.24E+01	2.06E+01	2.25E+01	2.20E+01	3.05E+01	0.72
K-40	3	2.63E+01	2.64E+01	2.81E+01	2.202+01 2.72F+01	3.05E+01	0.89
K-40	4	2.20E+01	2.46E+01	2.45E+01	2.39E+01	3.05E+01	0.78

Table 5.4. Sample Results with Positive Detections, the Weighted Average Concentration,and Comparison of the Weighted Average Concentration with the BTV^{a, b}

					12-cm		
					weighted		
					average		
		0–3 cm	3–6 cm	6–12 cm	concentration	BTV	Ratio to
Radionuclide	Location ^c	(pCi g ⁻¹)	BTV				
K-40	5	2.56E+01	2.78E+01	2.00E+01	2.34E+01	3.05E+01	0.77
K-40	6	3.20E+01	3.23E+01	2.98E+01	3.10E+01	3.05E+01	1.02
K-40	8	1.64E+01	1.63E+01	1.69E+01	1.66E+01	3.05E+01	0.55
K-40	9	1.36E+01	1.39E+01	1.35E+01	1.36E+01	3.05E+01	0.45
Pb-210	1	1.013	1.085	0.658	8.54E-01	2.07E+00	0.41
Pb-210	10	2.23E+00	0.554	1.25E+00	1.32E+00	2.07E+00	0.64
Pb-210	13	2.55	1.93E+00	1.63E+00	1.94E+00	2.07E+00	0.93
Pb-210	14	1.48E+00	0.777	1.52	1.32E+00	2.07E+00	0.64
Pb-210	2	1.02	1.24E+00	2.43	1.78E+00	2.07E+00	0.86
Pb-210	3	2.32	1.62E+00	2.14	2.06E+00	2.07E+00	0.99
Pb-210	5	4.22	2.41	1.01E+00	2.16E+00	2.07E+00	1.04
Pb-210	6	0.839	2.17	1.26E+00	1.38E+00	2.07E+00	0.67
Pb-212	1	1.53E+00	1.64E+00	1.69E+00	1.63E+00	2.67E+00	0.61
Pb-212	10	3.73E-01	4.23E-01	4.65E-01	4.32E-01	2.67E+00	0.16
Pb-212	11	1 38E+00	1.49E+00	1 54E+00	1.49E+00	2.67 ± 00	0.10
Pb-212	13	1.30E+00 1.29E+00	1.492+00 1.28E+00	1.94E+00 1.06E+00	1.45E+00 1.17E+00	2.67E+00	0.30
Db 212	13	0.12F 01	0.76E.01	1.00E+00 1.04E+00	0.02E.01	2.67E+00	0.37
Db 212	14	9.12E-01 1.07E+00	9.70E-01	1.04E+00	9.92E-01 1.02E±00	2.07E+00	0.37
FU-212 DL 212	15	1.07E+00	9.50E-01	0.80E 01	0.78E 01	2.07E+00	0.39
PD-212 DL 212	10	9.//E-01	9.50E-01	9.89E-01	9.78E-01	2.0/E+00	0.57
PD-212	17	3.8/E-01	3.09E-01	3.9/E-01	3.88E-01	2.67E+00	0.15
Pb-212	18	1.23E+00	1.24E+00	1.16E+00	1.20E+00	2.6/E+00	0.45
Pb-212	2	1.69E+00	1.67E+00	1.73E+00	1.71E+00	2.67E+00	0.64
Pb-212	3	1.6/E+00	1.73E+00	1.91E+00	1.81E+00	2.6/E+00	0.68
Pb-212	4	1.30E+00	1.48E+00	1.61E+00	1.50E+00	2.67E+00	0.56
Pb-212	5	1.75E+00	2.02E+00	1.46E+00	1.67E+00	2.67E+00	0.63
Pb-212	6	6.03E-01	8.86E-01	1.16E+00	9.52E-01	2.67E+00	0.36
Pb-212	8	1.00E+00	9.42E-01	1.04E+00	1.01E+00	2.67E+00	0.38
Pb-212	9	8.29E-01	9.32E-01	9.24E-01	9.02E-01	2.67E+00	0.34
Po-210	1	1.20E+00	5.79E-01	6.54E-01	7.72E-01	2.09E+00	0.37
Po-210	10	1.38E+00	1.09E+00	1.50E+00	1.37E+00	2.09E+00	0.65
Po-210	11	2.85E+00	2.55E+00	1.87E+00	2.29E+00	2.09E+00	1.09
Po-210	13	1.48E+00	1.35E+00	1.66E+00	1.54E+00	2.09E+00	0.74
Po-210	14	1.26E+00	1.04E+00	9.55E-01	1.05E+00	2.09E+00	0.50
Po-210	15	1.20E+00	1.02E+00	6.42E-01	8.76E-01	2.09E+00	0.42
Po-210	16	9.60E-01	9.77E-01	9.88E-01	9.78E-01	2.09E+00	0.47
Po-210	17	4.17E-01	3.78E-01	2.03E-01	3.00E-01	2.09E+00	0.14
Po-210	18	1.25E+00	9.29E-01	9.92E-01	1.04E+00	2.09E+00	0.50
Po-210	2	8.91E-01	7.75E-01	7.63E-01	7.98E-01	2.09E+00	0.38
Po-210	3	1.75E+00	1.74E+00	1.30E+00	1.52E+00	2.09E+00	0.73
Po-210	4	1.32E+00	9.34E-01	8.48E-01	9.88E-01	2.09E+00	0.47
Po-210	5	1.52 ± 00	6 92E-01	7 97E-01	9.67E-01	2.09E+00	0.46
Po-210	6	1.85E+00	1.24E+00	1.49E+00	1.52E+00	2.09E+00	0.10
Po-210	8	2.54E+00	2.33E+00	5.45E-01	1.32E+00 1 49E+00	2.09E+00	0.75
Po-210	0	1.44E+00	7.36E-01	8.85E_01	9.87E_01	2.09E+00	0.71
Po 226	1	1.44E+00 1.15E+00	$1.11E\pm00$	1.16E+00	$1.14E\pm00$	1.88E+00	0.47
Ra-220	10	1.15E+00 1.06E+00	1.112+00 1 13E+00	1.10E+00	1.140+00 1.17E+00	1.88E±00	0.67
Ra-220	10	2 76E-00	2 16E+00	2 71EJ 00	2.84E+00	1 895100	1.51
Ra-220 Do 226	11	$2.70E \pm 0.0$	$2.10E \pm 00$	$2.71E \pm 00$	2.04ET00	1.00E+00	1.51
Ra-220	13	2.55E+00	2.20E+00	2.00E+00	2.15E+00	1.00E+00	1.14
Ka-220	14	1.35E+00	1.4/E+00	1.34E+00	1.33E+00	1.88E+00	0.81
ка-226	15	1.2/E+00	1.23E+00	1.33E+00	1.29E+00	1.88E+00	0.69
Ka-226	16	1.68E+00	1.53E+00	1.52E+00	1.56E+00	1.88E+00	0.83
Ra-226	17	3.62E-01	3.48E-01	3.41E-01	3.48E-01	1.88E+00	0.19
Ra-226	18	1.79E+00	1.76E+00	1.88E+00	1.83E+00	1.88E+00	0.97
Ra-226	2	1.29E+00	1.36E+00	1.43E+00	1.38E+00	1.88E+00	0.73

Table 5.4. Sample Results with Positive Detections, the Weighted Average Concentration, and Comparison of the Weighted Average Concentration with the BTV^{a, b}

RISK ASSESSMENT CORPORATION

61

science > environment > community

^		8	8		12_0m		
					12-Cill weighted		
					weighted		
				< 1 0	average	D	
		0–3 cm	3–6 cm	6–12 cm	concentration	BTV	Ratio to
Radionuclide	Location ^c	(pCi g ⁻¹)	$(pCi g^{-1})$	(pCi g ⁻¹)	(pCi g ⁻¹)	(pCi g ⁻¹)	BTV
Ra-226	3	1.45E+00	1.39E+00	1.50E+00	1.46E+00	1.88E+00	0.78
Ra-226	4	1.03E+00	1.10E+00	1.12E+00	1.09E+00	1.88E+00	0.58
Ra-226	5	1.31E+00	1.33E+00	1.17E+00	1.25E+00	1.88E+00	0.66
Ra-226	6	6 17E-01	942E-01	1.05E+00	9 15E-01	1 88E+00	0.49
Ra-226	8	2.16E+00	2.02E+00	2.05E+00	2.07E+00	1.88E+00	1.10
Ra-220 Do 226	0	1.15E+00	1.20E+00	$1.24E\pm00$	1.28E+00	1.00L+00	0.68
Ra-220 Do 229	9	1.13E+00	1.29E+00	1.34L+00 1.72E+00	1.20E+00	$1.00E \pm 00$	0.08
Ra-228	1	1.60E+00	1.00E+00	1.72E+00	1.0/E+00	2.30E+00	0.73
Ra-228	10	3.92E-01	4.26E-01	4.95E-01	4.52E-01	2.30E+00	0.20
Ra-228	11	1.37E+00	1.51E+00	1.50E+00	1.4/E+00	2.30E+00	0.64
Ra-228	13	1.25E+00	1.18E+00	1.15E+00	1.18E+00	2.30E+00	0.51
Ra-228	14	1.05E+00	9.94E-01	1.06E+00	1.04E+00	2.30E+00	0.45
Ra-228	15	1.02E+00	1.01E+00	1.08E+00	1.05E+00	2.30E+00	0.46
Ra-228	16	1.03E+00	9.22E-01	9.61E-01	9.69E-01	2.30E+00	0.42
Ra-228	17	3.89E-01	3.72E-01	4.07E-01	3.94E-01	2.30E+00	0.17
Ra-228	18	1.22E+00	1.24E+00	1.26E+00	1.25E+00	2.30E+00	0.54
Ra-228	2	1.71E+00	1.72E+00	1.26E+00	1.202+00 1.74E+00	2.30E+00	0.76
R_{a-220}	3	1.71E+00	1.72E+00 1.86E+00	1.70E+00 1.91E+00	1.742+00 1.85E+00	2.30E+00	0.70
Ra-220 Do 229	1	1.71E+00	1.50E+00	1.91E+00	1.65E+00	2.30E+00	0.60
Ra-220	4	$1.42E\pm00$	1.30E+00	1.00E±00	1.35E+00	2.30E+00	0.07
Ra-228	5	1.73E+00	1.99E+00	1.55E+00	1./IE+00	2.30E+00	0.74
Ra-228	6	6.31E-01	8.96E-01	1.19E+00	9.//E-01	2.30E+00	0.42
Ra-228	8	9.21E-01	9.61E-01	1.0/E+00	1.01E+00	2.30E+00	0.44
Ra-228	9	8.66E-01	9.55E-01	9.38E-01	9.24E-01	2.30E+00	0.40
Sr-90	5	2.48E-02	0.0122	1.67E-02	1.76E-02	7.50E-02	0.23
Th-228	1	1.36E+00	1.56E+00	1.39E+00	1.42E+00	3.67E+00	0.39
Th-228	10	4.16E-01	5.19E-01	3.77E-01	4.22E-01	3.67E+00	0.12
Th-228	11	9.79E-01	7.49E-01	1.14E+00	1.00E+00	3.67E+00	0.27
Th-228	13	9.87E-01	8.85E-01	8.95E-01	9.16E-01	3.67E+00	0.25
Th-228	14	8.32E-01	8.54E-01	8.75E-01	8.59E-01	3.67E+00	0.23
Th-228	15	7.47E-01	9.34E-01	7.15E-01	7.78E-01	3.67E+00	0.21
Th-228	16	936E-01	8 96E-01	8 91 F-01	9.04F-01	3.67E+00	0.25
Th_{220} Th_228	17	2.26E_01	$4.01E_{-}01$	3.11E_01	3.12E-01	3.67E+00	0.09
Th 228	18	2.20L-01 8.83E 01	8 20E 01	7.86E.01	9.12E-01 8.10E-01	3.67E+00	0.02
Th 220	2	1 19E+00	1.20E-01	1.20E+00	1.27E+00	2.67E+00	0.22
Th 220	2	$1.16E \pm 00$	$1.26E \pm 00$	1.30E±00	$1.2/E \pm 00$	$3.0/E \pm 00$	0.54
Th-228	3	1.53E+00	1.4/E+00	1.43E+00	1.4/E+00	3.0/E+00	0.40
Th-228	4	1.2/E+00	1.31E+00	1.31E+00	1.30E+00	3.6/E+00	0.35
Th-228	5	1.54E+00	1.90E+00	1.55E+00	1.64E+00	3.6/E+00	0.45
Th-228	6	6.40E-01	1.05E+00	7.83E-01	8.14E-01	3.67E+00	0.22
Th-228	8	8.32E-01	7.92E-01	0.7115	7.62E-01	3.67E+00	0.21
Th-228	9	7.35E-01	6.18E-01	6.71E-01	6.74E-01	3.67E+00	0.18
Th-229	1	0.038	-0.0037	1.59E-01	8.82E-02	4.62E-02	1.91
Th-229	4	0.011	1.28E-01	0.0697	6.95E-02	4.62E-02	1.50
Th-229	5	2.68E-08	1.29E-01	0.0316	4.81E-02	4.62E-02	1.04
Th-230	1	1.10E+00	1.31E+00	1.11E+00	1.16E+00	2.04E+00	0.57
Th-230	10	1.64E+00	1.82E+00	1.42E+00	1.58E+00	2.04E+00	0.77
Th-230	11	2 40E+00	2 67E+00	3 17E+00	2 85E+00	2 04E+00	1 40
Th-230	13	2 30E+00	2.37E+00	2.15E+00	2.002+00 2.24F+00	2.04E+00	1 10
Th_230	1.7	1.50E+00	1.33E+00	1.23E+00	1.24E+00	2.012+0.0	0.65
Th 230	14	0.11E-01	1.33E+00	1.10E+00	1.55E±00	2.04E+00	0.05
111-230 Th 220	13	9.11E-01	$1.12E \pm 0.0$	1.10E+00	1.00E+00	2.04E+00	0.52
1 n-230	16	1./1E+00	1.63E+00	1.5/E+00	1.62E+00	2.04E+00	0.79
Th-230	17	5.06E-01	3.53E-01	4.00E-01	4.15E-01	2.04E+00	0.20
Th-230	18	1.86E+00	1.82E+00	2.12E+00	1.98E+00	2.04E+00	0.97
Th-230	2	1.14E+00	8.20E-01	9.25E-01	9.53E-01	2.04E+00	0.47
Th-230	3	1.24E+00	1.30E+00	1.44E+00	1.36E+00	2.04E+00	0.66
Th-230	4	8.49E-01	1.01E+00	1.06E+00	9.95E-01	2.04E+00	0.49

Table 5.4. Sample Results with Positive Detections, the Weighted Average Concentration, and Comparison of the Weighted Average Concentration with the BTV^{a, b}

					12-cm		
					weighted		
					average		
		0–3 cm	3–6 cm	6–12 cm	concentration	BTV	Ratio to
Radionuclide	Location ^c	$(pC_1 g^{-1})$	$(pC_1 g^{-1})$	$(pCi g^{-1})$	$(pC_1 g^{-1})$	$(pCi g^{-1})$	BTV
Th-230	5	1.09E+00	1.08E+00	1.26E+00	1.17E+00	2.04E+00	0.57
Th-230	6	8.02E-01	1.25E+00	1.07E+00	1.05E+00	2.04E+00	0.51
Th-230	8	2.52E+00	2.63E+00	2.65E+00	2.61E+00	2.04E+00	1.28
Th-230	9	2.08E+00	2.05E+00	2.05E+00	2.06E+00	2.04E+00	1.01
Th-232	1	1.21E+00	1.57E+00	1.14E+00	1.26E+00	2.95E+00	0.43
Th-232	10	3.78E-01	4.44E-01	3.55E-01	3.83E-01	2.95E+00	0.13
Th-232	11	7.09E-01	7.44E-01	7.94E-01	7.60E-01	2.95E+00	0.26
Th-232	13	8.83E-01	8.32E-01	8.48E-01	8.53E-01	2.95E+00	0.29
Th-232	14	8.29E-01	7.30E-01	6.15E-01	6.97E-01	2.95E+00	0.24
Th-232	15	6.99E-01	7.64E-01	7.26E-01	7.29E-01	2.95E+00	0.25
Th-232	16	8.61E-01	7.22E-01	7.67E-01	7.79E-01	2.95E+00	0.26
Th-232	17	3.66E-01	3.93E-01	3.28E-01	3.54E-01	2.95E+00	0.12
Th-232	18	9.14E-01	7.72E-01	8.64E-01	8.54E-01	2.95E+00	0.29
Th-232	2	1.59E+00	1.17E+00	1.28E+00	1.33E+00	2.95E+00	0.45
Th-232	3	1.32E+00	1.25E+00	1.25E+00	1.27E+00	2.95E+00	0.43
Th-232	4	1.12E+00	1.25E+00	1.18E+00	1.18E+00	2.95E+00	0.40
Th-232	5	1.30E+00	1.33E+00	1.33E+00	1.32E+00	2.95E+00	0.45
Th-232	6	4.92E-01	9.06E-01	6.00E-01	6.50E-01	2.95E+00	0.22
Th-232	8	7.71E-01	6.87E-01	8.34E-01	7.82E-01	2.95E+00	0.26
Th-232	9	7.82E-01	6.41E-01	6.07E-01	6.59E-01	2.95E+00	0.22
Th-234	1	1.29E+00	1.16E+00	1.11E+00	1.17E+00	3.04E+00	0.38
Th-234	10	1.68E+00	1.70E+00	1.76E+00	1.73E+00	3.04E+00	0.57
Th-234	11	3.99E+00	4.43E+00	3.67E+00	3.94E+00	3.04E+00	1.30
Th-234	13	1.47E+00	1.24E+00	1.04E+00	1.20E+00	3.04E+00	0.39
Th-234	14	1.27E+00	0.656	1.10E+00	1.03E+00	3.04E+00	0.34
Th-234	15	0.65	1.91E+00	0.558	9.19E-01	3.04E+00	0.30
Th-234	16	1.20E+00	1.03E+00	1.63E+00	1.37E+00	3.04E+00	0.45
Th-234	17	4.17E-01	0.182	0.00	1.50E-01	3.04E+00	0.05
Th-234	18	1.19E+00	1.65E+00	1.63E+00	1.53E+00	3.04E+00	0.50
Th-234	2	1.51E+00	1.42E+00	2.36E+00	1.91E+00	3.04E+00	0.63
Th-234	3	2.07E+00	1.55E+00	2.09E+00	1.95E+00	3.04E+00	0.64
Th-234	4	1.29E+00	9.03E-01	1.05E+00	1.07E+00	3.04E+00	0.35
Th-234	5	2.11E+00	1.27E+00	1.20E+00	1.45E+00	3.04E+00	0.48
Th-234	6	0.00	9.79E-01	1.12E+00	8.05E-01	3.04E+00	0.26
Th-234	8	2.43E+00	2.25E+00	2.89E+00	2.62E+00	3.04E+00	0.86
Th-234	9	0.00	1.04E+00	1.29E+00	9.05E-01	3.04E+00	0.30
T1-208	1	4.94E-01	4.74E-01	5.39E-01	5.12E-01	9.23E-01	0.55
T1-208	10	1.17E-01	1.21E-01	1.51E-01	1.35E-01	9.23E-01	0.15
T1-208	11	4.43E-01	4.31E-01	4.61E-01	4.49E-01	9.23E-01	0.49
T1-208	13	4.13E-01	4.11E-01	3.49E-01	3.81E-01	9.23E-01	0.41
T1-208	14	3.08E-01	2.65E-01	2.96E-01	2.91E-01	9.23E-01	0.32
T1-208	15	3.07E-01	3.10E-01	3.25E-01	3.17E-01	9.23E-01	0.34
T1-208	16	3.22E-01	2.81E-01	3.06E-01	3.04E-01	9.23E-01	0.33
T1-208	17	1.26E-01	1.14E-01	1.12E-01	1.16E-01	9.23E-01	0.13
T1-208	18	3.69E-01	3.70E-01	3.74E-01	3.72E-01	9.23E-01	0.40
T1-208	2	5.21E-01	5.28E-01	5.54E-01	5.39E-01	9.23E-01	0.58
T1-208	3	5.10E-01	5.36E-01	5.77E-01	5.50E-01	9.23E-01	0.60
T1-208	4	4.45E-01	4.65E-01	4.67E-01	4.61E-01	9.23E-01	0.50
T1-208	5	5.20E-01	5.71E-01	4.78E-01	5.12E-01	9.23E-01	0.55
T1-208	6	1.89E-01	2.57E-01	3.70E-01	2.97E-01	9.23E-01	0.32
T1-208	8	2.76E-01	3.04E-01	2.78E-01	2.84E-01	9.23E-01	0.31
T1-208	9	2.69E-01	2.71E-01	2.65E-01	2.68E-01	9.23E-01	0.29
U-232	18	0.0143	-0.0315	8.53E-02	3.84E-02	5.65E-02	0.68
U-233/234	1	9.69E-01	9.64E-01	9.77E-01	9.71E-01	1.87E+00	0.52

 Table 5.4. Sample Results with Positive Detections, the Weighted Average Concentration, and Comparison of the Weighted Average Concentration with the BTV^{a, b}

RISK ASSESSMENT CORPORATION

science > environment > community

					12-cm		
					weighted		
					average		
		0–3 cm	3–6 cm	6–12 cm	concentration	BTV	Ratio to
Radionuclide	Location ^c	$(pCi g^{-1})$	(pCi g ⁻¹)	(pCi g ⁻¹)	$(pCi g^{-1})$	$(pCi g^{-1})$	BTV
U-233/234	10	1.54E+00	1.44E+00	1.63E+00	1.56E+00	1.87E+00	0.83
U-233/234	11	2.81E+00	3.13E+00	3.28E+00	3.13E+00	1.87E+00	1.67
U-233/234	13	9.64E-01	8.24E-01	1.01E+00	9.52E-01	1.87E+00	0.51
U-233/234	14	7.04E-01	8.31E-01	7.43E-01	7.55E-01	1.87E+00	0.40
U-233/234	15	6.41E-01	6.60E-01	6.12E-01	6.31E-01	1.87E+00	0.34
U-233/234	16	1.09E+00	1.05E+00	1.08E+00	1.08E+00	1.87E+00	0.57
U-233/234	17	2.98E-01	3.29E-01	2.47E-01	2.80E-01	1.87E+00	0.15
U-233/234	18	9.29E-01	9.24E-01	9.48E-01	9.37E-01	1.87E+00	0.50
U-233/234	2	1.02E+00	8 87E-01	7.82E-01	8.68E-01	1.87E+00	0.46
U-233/234	3	1.17E+00	1.39E+00	1 69E+00	1.49E+00	1.87 ± 00	0.79
U-233/234	4	1.03E+00	1.09E+00	9 29E-01	9 95E-01	1.87E+00	0.53
U-233/234	5	1.03E+00 1.13E+00	9.17E-01	1.13E+00	1.08E+00	1.87E+00	0.55
U-233/234	6	$5.47E_{-}01$	1.03E+00	9.08E_01	8/18E-01	1.87E+00	0.45
U-233/234	8	2.16E+00	2.10E+00	2.24E+00	2.10E+00	1.87E+00	1.17
U-233/234	0	7 88E 01	1.06E+00	1.09E+00	1.01E+00	1.87E+00	0.54
U-235/234	9	1.08E-01	7.08E 02	6 11E 02	7.52E 02	1.07E+00 1.20E 01	0.54
U-235/230	10	1.06E-01	7.08E-02	0.11E-02 1.22E-01	7.33E-02	1.30E-01	0.38
U-235/230	10	1.00E-01	1.95E-02	2.79E.01	2.25E.01	1.30E-01	1.93
U-233/230	11	1.96E-01	1.63E-01	2./6E-01	2.55E-01 4.70E-02	1.30E-01	1.01
U-235/250	15	0.33E-02	0.0551	0.0340	4.70E-02	1.30E-01	0.30
U-235/250	15	4./4E-02	4.03E-02	0.0150	3.13E-02	1.30E-01	0.24
U-235/230	10	2.44E-01	1.13E-01	2.25E-01	2.02E-01	1.30E-01	1.55
U-235/230	1/	0.0198	2./8E-02	0.0128	1.83E-02	1.30E-01	0.14
U-235/236	18	4.28E-02	5.49E-02	0.0432	4.60E-02	1.30E-01	0.35
U-235/236	2	7.10E-02	5.44E-02	7.25E-02	6./6E-02	1.30E-01	0.52
U-235/236	3	8.32E-02	9.02E-02	1.80E-01	1.33E-01	1.30E-01	1.03
U-235/236	4	1.02E-01	1.64E-01	1.25E-01	1.29E-01	1.30E-01	0.99
U-235/236	5	8.49E-02	0.0366	0.0546	5.//E-02	1.30E-01	0.44
U-235/236	6	0.018	6.90E-02	5.32E-02	4.84E-02	1.30E-01	0.37
U-235/236	8	1.75E-01	2.38E-01	1.4/E-01	1.7/E-01	1.30E-01	1.36
U-235/236	9	8.20E-02	0.0353	1.36E-01	9.73E-02	1.30E-01	0.75
U-238	1	9.26E-01	1.02E+00	1.13E+00	1.05E+00	1.68E+00	0.63
U-238	10	1.43E+00	1.42E+00	1.74E+00	1.58E+00	1.68E+00	0.94
U-238	11	2.73E+00	3.01E+00	3.41E+00	3.14E+00	1.68E+00	1.87
U-238	13	1.00E+00	7.95E-01	1.09E+00	9.94E-01	1.68E+00	0.59
U-238	14	7.76E-01	6.91E-01	6.78E-01	7.06E-01	1.68E+00	0.42
U-238	15	6.21E-01	6.70E-01	6.25E-01	6.35E-01	1.68E+00	0.38
U-238	16	1.23E+00	1.28E+00	1.29E+00	1.27E+00	1.68E+00	0.76
U-238	17	3.23E-01	2.77E-01	3.15E-01	3.08E-01	1.68E+00	0.18
U-238	18	8.46E-01	9.01E-01	9.05E-01	8.89E-01	1.68E+00	0.53
U-238	2	9.20E-01	9.22E-01	9.62E-01	9.42E-01	1.68E+00	0.56
U-238	3	1.19E+00	1.50E+00	1.63E+00	1.49E+00	1.68E+00	0.89
U-238	4	9.11E-01	1.09E+00	8.95E-01	9.48E-01	1.68E+00	0.56
U-238	5	9.61E-01	1.18E+00	1.12E+00	1.10E+00	1.68E+00	0.65
U-238	6	4.82E-01	9.96E-01	9.66E-01	8.53E-01	1.68E+00	0.51
U-238	8	2.18E+00	2.37E+00	2.16E+00	2.22E+00	1.68E+00	1.32
U-238	9	7.90E-01	8.32E-01	1.07E+00	9.41E-01	1.68E+00	0.56

Table 5.4. Sample Results with Positive Detections, the Weighted Average Concentration, and Comparison of the Weighted Average Concentration with the BTV^{a, b}

a. BTV ratios greater than 1.0 are shaded.

b. Non-detect values are identified in **bold**. A *bold italic* value represents the average of the primary sample and laboratory duplicate where either the primary or duplicate was a nondetect.

c. All sample results represent the average concentration reported in the primary sample and any laboratory duplicates. Concentrations for location 1 represent the average of the primary samples (1A, 1B, 1C) and the sample duplicate (1A-D, 1B-D, and 1C-D) including any laboratory duplicates.

5.3.1. Samples that Exceed the BTV

Sample locations with weighted average radionuclide concentrations that exceeded the BTV value were at locations inside the deposition plume, outside the deposition plume, and at background locations (Table 5-5). Analytical uncertainty was propagated through to the weighted average concentration using Equation 5-4 (Bevington and Robinson 1992)

$$\sigma_{w} = \sqrt{\frac{a^{2}\sigma_{a}^{2} + b^{2}\sigma_{b}^{2} + c^{2}\sigma_{c}^{2}}{\left(a + b + c\right)^{2}}}$$
(5-4)

where

σ_{w}	=	standard deviation of weighted mean concentration (pCi g^{-1})
σ_{a}	=	analytical uncertainty in the 0-3 cm layer (pCi g^{-1})
σ_b	=	analytical uncertainty in the 3-6 cm layer (pCi g^{-1})
σ_c	=	analytical uncertainty in the 6-12 cm layer (pCi g ⁻¹)
a, b, c	=	3 cm, 3 cm, and 12 cm, respectively.

Analytical uncertainties for each measurement are presented in Appendix B. A one-tailed *t*-test was performed to test whether the measured concentration was greater than the BTV value (α =0.025, *df*= ∞ , *t*=1.98). Thus, the null and alternative hypothesis and calculated *t* value are:

$$H_{o}: \overline{X} \leq BTV$$

$$H_{a}: \overline{X} > BTV$$

$$t = \frac{\overline{X} - BTV}{\sigma}$$
(5-5)

Most sample/BTV ratios were less than 1.5. Many of the weighted average concentrations were not significantly higher than the BTV value and were taken in a geologic formation that differed from the formations sampled for the EPA background study (noted in Table 5.4). Thorium-229 had some of the highest BTV ratios, but weighted average concentrations were not significantly higher than the BTV value and these samples were taken at background location 1 (Rocky Peak north of SSFL). Background location 1 was outside the plume and upwind of the SSFL, therefore the concentrations cannot be attributed to the Woolsey Fire or SSFL operations.

Other radionuclides with a weighted-average concentration significantly greater than the BTV value were ²²⁶Ra, ²³⁰Th, and uranium isotopes, all of which are naturally occurring. Most of these samples were taken at either a background location, in a different geologic formation than the EPA background study, or outside the plume, except ²²⁶Ra at location 13. Radium-226 at location 13 was only slightly above the BTV (BTV ratio of 1.14) and did show a decrease in concentration with depth; however, none of the other sample locations in that vicinity (14, 15, and 18) were above background or showed a decrease in concentration with depth. If the ²²⁶Ra depth profile observed at location 13 was from plume deposition, then we would expect to see similar depth profiles at locations 14, 15, and 18, all of which were located less than a kilometer from one another. Moreover, ²³⁰Th and ²²⁶Ra had concentrations close to one another (2.30 and 2.35 pCi g⁻¹, respectively), as would be expected in the natural environment. Thorium-230 and ²²⁶Ra are naturally occurring radionuclides and would exhibit natural variability in the environment. Given

the fact that BTV ratios were close to 1.0, we conclude that the 226 Ra detected at sample location 13 was from natural sources.

			12-cm weighted average				
Radio-		BTV	with uncertainty	Ratio to			
nuclide	Location	(pCi/g)	$(pCi g^{-1})$	BTV	Significant? ^a	In plume?	Notes
K-40	6	30.5	31.0±0.281	1.02	No	Yes	Natural background radionuclide
Pb-210	5	2.07	2.16±0.217	1.04	No	No	Background location and natural background radionuclide
Po-210	11	2.09	2.29±0.230	1.09	No	No	Different geologic formation than SSFL or EPA background formations
Ra-226	11	1.88	2.84±0.027	1.51	Yes	No	Different geologic formation than SSFL or EPA background formations
Ra-226	13	1.88	2.15±0.025	1.14	Yes	Yes	Natural background radionuclide – see discussion
Ra-226	8	1.88	2.07±0.031	1.10	Yes	Yes	Different geologic formation than SSFL or EPA background formations
Th-229	1	0.046	0.088 ± 0.037	1.91	No	No	Background location
Th-229	4	0.046	0.070±0.017	1.50	No	No	Background location
Th-229	5	0.046	0.048±0.022	1.04	No	No	Background location
Th-230	11	2.04	2.85±0.246	1.40	Yes	No	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)
Th-230	13	2.04	2.24±0.141	1.10	No	Yes	Natural background radionuclide
Th-230	8	2.04	2.61±0.300	1.28	No	Yes	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)
Th-230	9	2.04	2.06±0.150	1.01	No	Yes	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)
Th-234	11	3.04	3.94±0.570	1.30	No	No	Different geologic formation than SSFL or EPA background formations. A short-lived progeny of U-238 and will not exist in nature without the presence of U-238
U-233/234	l 11	1.87	3.13±0.143	1.67	Yes	No	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)
U-233/234	8	1.87	2.19±0.106	1.17	Yes	Yes	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)
U-235/236	5 11	0.130	0.235±0.044	1.81	Yes	No	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)
U-235/236	5 16	0.130	0.202±0.035	1.55	Yes	Yes	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)

Table 5.5. Sample Results that have a	Weighted	Average	Concentration	Greater	than the
	BTV				

Radio-		BTV	with uncertainty	Ratio to			
nuclide	Location	(pCi/g)	(pCi g ⁻¹)	BTV	Significant? ^a	In plume?	Notes
U-235/236	3	0.130	0.133±0.033	1.03	No	No	Natural background radionuclide
U-235/236	8	0.130	0.177±0.030	1.36	No	Yes	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)
U-238	11	1.68	3.14±0.144	1.87	Yes	No	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)
U-238	8	1.68	2.22±0.106	1.32	Yes	Yes	Different geologic formation than SSFL or EPA background formations (Chatsworth and Santa Susana)

5.3.2. Results from TestAmerica Laboratory of Sample Split at Location 2

A split sample was taken at location 2, which was outside the plume and located about 500 m west of the EPA background location identified as Bridal Path. A complete tabulation of results including analytical uncertainty is provided in Appendix B. Table 5-6 shows the results that were positively detected according to the criteria in Section 5.2.3 and the BTV ratio. Uncertainty in the weighted average concentration was calculated using Equation 5-4. TestAmerica provided the analytical results for the primary and laboratory duplicate surface sample, and the values presented in Table 5-6 represent the average of the primary and laboratory duplicate sample. Table 5-7 shows a comparison of the TestAmerica results to those of GEL, where both the GEL and TestAmerica results were positively detected according to the criteria stated in Section 5.2.3. Analytical uncertainty was propagated using Equation 5-4 and a two-tailed t-test was performed using methods described in Appendix C. The ratio of the TestAmerica results to that of GEL ranged from 0.43 to 1.56, with an average ratio of 0.91. We conclude that for radionuclides that were positively detected, the TestAmerica results are comparable to the GEL results. Weighted-average concentrations of ²²⁸Ac and ²²⁸Ra were significantly different between GEL and TestAmerica at the p=0.05 level but not the p=0.025 level. All other weighted-average concentrations between GEL and Test America were not significantly different from one another at the p=0.05 level.

Table 5.6. Sample Results from TestAmerica with Positive Detections, the Weighted
Average Concentration, and Comparison of the Weighted Average Concentration with the
BTV

				Weighted average with		
	0–3 cm	3–6 cm	6–12 cm	uncertainty	Ratio to	
Radionuclide	(pCi g ⁻¹) ^a	$(pCi g^{-1})$	(pCi g ⁻¹)	$(pCi g^{-1})$	BTV	Significant? ^b
Ac-228	1.553	1.46	1.56	1.50 ± 0.110	0.652	No
Bi-212	1.576	1.55	1.65	1.62 ± 0.162	0.795	No
C-14	0.608	0.364	1.05	0.770 ± 0.378	0.303	No
Cs-134	0.00391	0.08076	0.0948	0.058 ± 0.013	1.94	Yes
Cs-137	0.0713	0.06322	0.0731	0.067 ± 0.014	0.345	No

Radionuclide	0-3 cm (pCi g ⁻¹) ^a	3–6 cm (pCi g ⁻¹)	6–12 cm (pCi g ⁻¹)	Weighted average with uncertainty (pCi g ⁻¹)	Ratio to BTV	Significant? ^b
Eu-155	0.111	0.09216	0.138	0.12±0.033	0.588	No
K-40	20.5	21.19	21.1	20.7±1.440	0.677	No
Nb-94	0.00197	0.01615	-0.00464	$0.004{\pm}0.012$	0.222	No
Pb-210	1.29	1.435	1.35	1.33 ± 0.383	0.642	No
Pb-212	1.59	1.602	1.71	1.62 ± 0.120	0.608	No
Po-210	0.582	0.6302	0.494	$0.54{\pm}0.058$	0.258	No
Pu-241	1.65	1.382	0.125	0.85 ± 0.577	2.45	No
Ra-226	1.38	1.338	1.42	1.37 ± 0.100	0.7286	No
Ra-228	1.46	1.553	1.56	1.50 ± 0.110	0.652	No
Th-228	1.38	1.316	1.36	1.34 ± 0.117	0.366	No
Th-229	0.03	0.03028	-0.0104	0.002 ± 0.012	0.0505	No
Th-230	1.00	1.331	0.859	0.96 ± 0.094	0.471	No
Th-231	0.0748	0.1177	0.138	0.12 ± 0.051	0.894	No
Th-232	1.35	1.217	1.17	1.21 ± 0.107	0.411	No
Th-234	0.0748	0.9809	1.02	$0.84{\pm}0.149$	0.275	No
T1-208	0.508	0.5015	0.539	0.52 ± 0.040	0.563	No
U-238	2.12	1.038	0.844	1.08 ± 0.127	0.642	No
a. Average of	f the sample an	d the laborator	y duplicate			

b. The calculated *t*-value exceeded 1.98.

Two radionuclides exceeded the BTV value in the TestAmerica results (Table 5-6): ¹³⁴Cs and ²⁴¹Pu but only ¹³⁴Cs was significantly different. These radionuclides are not priority-1 radionuclides. Location 2 is located 8.5 km west of the western edge of the SSFL site and is outside the Woolsey Fire particulate deposition plume area. Based on the annual wind rose (Figure 5-4), location 2 was very unlikely to have been impacted by the SSFL operations in the past. Winds would have had to come out of the east for any airborne contamination to impact location 2. Based on the annual wind rose, this occurs only 2% of the time. The EPA concluded in its background study that this location is unimpacted by the SSFL. These conclusions, along with the fact that the highest concentrations of ²⁴¹Pu and ¹³⁴Cs occurred at depth, means that ²⁴¹Pu and ¹³⁴Cs at location 2 are not attributed to the Woolsey Fire or the SSFL operations in the past.

The detections of ¹³⁴Cs and ²⁴¹Pu are likely not accurate measurements for the reasons discussed below. First, ¹³⁴Cs was not detected in a reanalysis of the 0–3 cm surface sample, suggesting that the results for ¹³⁴Cs are questionable. Cesium-134 has a half-life of 2.0648 years, and in the 2011 EPA background study, almost all the ¹³⁴Cs samples were less than the MDC and were flagged as being subject to spectral interference. The ¹³⁴Cs MDC for the EPA background study was approximately 0.3 pCi g⁻¹ and would have been adequate to detect the 0–12 cm weighted average concentration measured in this current study if the measured concentrations are accurate. Thus, if the ¹³⁴Cs measurement at sample location 2 was accurate, then it would have to have been deposited between the time of the EPA background study (2011) and the time of this study (2019).

As stated earlier in Section 4.2.1, it is possible ¹³⁴Cs could be attributed to the Fukushima accident, but if this were the case, then ¹³⁷Cs concentration would be higher than ¹³⁴Cs which was not the case. Thus, it seems likely that the ¹³⁴Cs measurement reflects spectral interference and is not accurate.

The ²⁴¹Pu sample was positively detected in the 0–3 cm and 0–6 cm layer but undetected in the 6–12 cm layer. Plutonium-241 would be associated with ²³⁹Pu and, as discussed in Section 4.2.1, the ²⁴¹Pu/²³⁹Pu activity ratio from weapons testing fallout accounting for decay would be approximately 0.93 in 2019. Thus, if the measurement were accurate and the activity was from weapons fallout origin, we would expect to see ²³⁹Pu at roughly the same concentration as ²⁴¹Pu.

The ²⁴¹Pu measurements in the 2011 EPA background study were all flagged as non-detects with an MDC of approximately 0.6 pCi g⁻¹. The MDC for ²⁴¹Pu in the EPA background study would have been adequate to detect the 0–12 cm weighted average concentration measured in this current study if the measured concentrations are accurate. Because ²³⁹Pu was undetected in the TestAmerica samples and EPA did not detect ²⁴¹Pu in their sampling performed in 2009, the ²⁴¹Pu activity cannot be attributed to past weapons fallout.

Thus, if the ²⁴¹Pu measurements at sample location 2 were accurate, then it would have had to have been deposited between the time of the EPA background study (2011) and time of this study (2019). As stated earlier in Section 4.2.1, it was not likely the ²⁴¹Pu could be attributed to the Fukushima accident. The measured concentration by TestAmerica exceeds the highest concentrations measured in Japan after the Fukushima accident (Yang et al. 2015). Plutonium-241 is a low-energy beta emitter with a mean beta energy (5.2 keV) that is close to that of ³H (5.7 keV) (Browne and Firestone 1986). If the sample contained any ³H, it would have been impossible to distinguish the ²⁴¹Pu beta from the ³H beta. Thus, because it is possible that other beta interferences may be present in the sample and there is no conceivable source of the ²⁴¹Pu, it seems likely that the ²⁴¹Pu measurement is not accurate.

		TestAn	ierica and GI	lestAmerica and GEL												
	Ratio of	f TestAmerica	to GEL	TestAmerica weighted average with uncertainty	GEL weighted average with uncertainty											
	0–3 cm	3–6 cm	6–12 cm	$(pCi g^{-1})$	$(pCi g^{-1})$											
Ac-228	0.88	0.80	0.89	1.50 ± 0.11	1.74 ± 0.06											
Bi-212	0.85	0.79	0.99	1.62 ± 0.16	1.81±0.15											
Cs-137	1.11	0.74	1.56	0.07 ± 0.01	0.06 ± 0.01											
K-40	0.95	0.95	0.94	20.8±1.44	22.0±0.28											
Pb-210	1.34	1.01	0.56	1.33±0.38	1.78 ± 0.08											
Pb-212	0.65	0.89	0.99	1.50±0.12	1.71±0.02											
Po-210	0.68	0.73	0.65	0.54 ± 0.06	0.80±0.15											
Ra-226	1.05	0.94	0.99	1.37±0.10	1.38 ± 0.03											
Ra-228	0.88	0.80	0.89	1.50±0.11	1.74 ± 0.06											
Th-228	1.14	1.02	1.05	1.34±0.12	1.27±0.13											
Th-230	0.89	1.17	0.93	0.92 ± 0.09	0.95±0.11											
Th-232	0.81	1.05	0.91	1.21±0.11	1.33±0.12											

 Table 5.7. Ratio of the TestAmerica Result to GEL for Radionuclides Positively Detected by

 TestAmerica and GEL

	Ratio of	f TestAmerica	to GEL	TestAmerica	GEL weighted
	0–3 cm	3–6 cm	6–12 cm	weighted average with uncertainty (pCi g ⁻¹)	average with uncertainty (pCi g ⁻¹)
Th-234	0.69	0.55	0.43	0.96±0.15	1.91±0.85
T1-208	0.97	0.94	0.97	0.52 ± 0.04	0.54 ± 0.02
U-238	1.12	1.14	0.88	0.94±0.13	$0.94{\pm}0.07$

5.3.3. Radionuclide Concentration Cross Section across the Deposition Plume

Another way to view the results is to plot a cross section across the deposition plume. The cross-section line is illustrated in Figure 5-5. A cross section of the terrain and geology show the different geologic formations that are exposed on the surface (Figure 5-6) and was constructed from the geologic map provided in Yerks and Campbell (2005). Not shown in Figure 5-6 are the folds, faults, formation thickness, and other structural features. Thus, the geology shown in the figure is extremely simplified and does not show the structural complexity below the ground surface. The Cretaceous-age Chatsworth formation is the oldest formation and presumably underlies most of the region. It is overlain by the Tertiary-age Santa Susana formation, Modelo formation, and Towsley formation. In places, the Calabasas formation is unconformable above the Chatsworth formation in steeply dipping beds. Surface alluvium is present in drainage basins and in the western portion of the San Fernando valley between sample locations 10 and 11.

Figure 5-5. Plume deposition map showing cross-section line and terrain elevations. Cross-section line starts at sample location 2 and proceeds east to sample locations 3, 4, 5, 13, 14, 6, 8, 9, 10, and 11.

Figure 5-6. Terrain and simplified geologic cross section showing sample locations and geologic formations that are expressed on the surface. Folds, faults, and other structural features are not shown.

The deposition plume cross section and measured radionuclide concentrations in the 0-3 cm layer for priority-1 radionuclides that were positively detected at all locations in the cross section (Figure 5-7) show that (1) there are no discernable trends in anthropogenic radionuclide concentrations that would correspond to deposition from the plume and (2) concentrations for some naturally occurring radionuclides are related to the geology.

Figure 5-7. Deposition plume (gray-shaded region, right axis) and radionuclide concentrations (left axis) that were detected in 0–3 cm layer at all sample locations.

All sample results are generally within the range of expected natural background or fallout concentrations in the case of ¹³⁷Cs. Plutonium-239 was not detected in any of the surface or subsurface soils, and ⁹⁰Sr was only detected at location 5 which was outside the deposition plume. Sample 13, located in the center of the plume, is in the Modelo formation and exhibited higher ²²⁶Ra and ²³⁰Th concentrations compared to background locations 2, 3, 4, and 5. Radium-226 and ²³⁰Th concentrations for sample 14 (located ~500 m SE of location 13) were nearly the same as the background values. Uranium concentrations were about the same as the background locations. As discussed earlier, the higher ²²⁶Ra and ²³⁰Th at location 13 was not attributed to deposition. Location 6 was in alluvium and exhibited the lowest concentrations of all the locations. The ¹³⁷Cs concentrations at location 6 show no discernable depth profile, and thus, the sediments have probably been reworked since weapons fallout.

Analysis of the depth profiles is important for understanding the source of the radionuclides measured in the soil sample. Radionuclides that deposit from the atmosphere and are relatively immobile in soil would be initially present only in the surface soil. Over time, (tens of years) leaching and physical processes will transport radionuclides deposited on the surface to deeper layers. If the soil is disturbed, then the depth profile will be altered and not show a clear decrease of concentration with depth. Figure 5-8 shows the depth profiles for ¹³⁷Cs and uranium decay series radionuclides (²³⁸U, ²³⁰Th, ²²⁶Ra) at locations 5, 14, and 11. The depth profiles for ¹³⁷Cs show a clear decrease of concentration with depth (location 11 actually shows an increase in concentration in the 6–12 cm layer, but the concentration is not statistically different from the 3–6 cm layer [α = (0.05)). This is especially clear at location 5 where the concentration in the surface layer is almost a factor of 3 higher than in the 3–6 cm layer. A similar depth profile is observed if the radionuclide inventories in each layer are plotted instead of the concentration. The difference in the ¹³⁷Cs inventory in the surface and in the 3-6 cm layer in sample 5 is even greater (surface layer inventory is 3.7 times the inventory in the 3-6 cm layer). Thus, the 137 Cs profiles indicate atmospheric weapons testing fallout. The uranium series radionuclides have concentrations that vary within each of the layers but do not exhibit a consistent depth profile as observed with ¹³⁷Cs. These depth profiles and the fact that the relative proportion of the uranium series radionuclides remains the same with depth indicates a natural source.

Figure 5-8. Depth profiles for ²²⁶Ra, ²³⁰Th, ²³⁸U, and ¹³⁷Cs at locations 5 (background), 14 (center of plume), and 11 (east of plume). Cesium-137 soil concentrations are highest in the surface and generally decrease with depth, which is expected in undisturbed soil containing atmospheric fallout from weapons testing. Uranium decay-chain radionuclides exhibit a more-or-less uniform depth distribution, as would be expected for radionuclides of natural origin.

The highest uranium series concentrations were observed well outside the plume at location 11 in the diatomaceous shale member of the Modelo formation. The uranium and thorium series depth profiles at location 11 exhibit slightly higher concentrations at depth, and thus are of natural origin and not from any recent or past atmospheric source.

The highest thorium series concentrations were observed at background sampling locations 2, 3, 4, and 5, and outside the deposition plume. The highest ¹³⁷Cs concentration in the surface soil (0-3 cm) was observed outside the plume at background location 5.

Statistical tests (see Appendix D) were used to determine if a significant difference exists between mean radionuclide concentrations for background samples taken in the Chatsworth formation (samples 1, 3, 4, and 5) and those taken in the Modelo formation and within the deposition plume (samples 8, 9, 13, 14, 15, and 18). At the 95% confidence level ($\alpha = 0.05$), there was no significant difference between the mean ²²⁶Ra concentrations in the 0–3 cm and 3–6 cm layer, but there was a significant difference in the 6–12 cm layer. For ²³⁰Th, ²³⁴U, and ²³⁸U there was no significant difference between concentrations in the Chatsworth and Modelo formation in all layers, and thus no significant difference between sample locations in and outside the plume. For ²³²Th, ²²⁸Ra, and ²⁰⁸Tl (thorium decay series), a significant difference was observed between the two formations in all layers.

A second analysis was performed for the thorium series radionuclides to test whether the concentrations were significantly higher in the Modelo formation. The results showed that thorium decay series radionuclide concentrations in the Modelo formation and within the plume were *lower* compared to the background samples taken outside the plume and in the Chatsworth formation (p < 0.005).

Overall, the cross-section and depth profiles show there is no evidence of radionuclides potentially from the SSFL in the deposition plume, and soil concentrations reflect natural variability and variability among the geologic formations, with the Modelo formation generally having lower thorium series concentrations compared to the Chatsworth formation that underlies most of the SSFL. If the plume from the Woolsey Fire deposited significant radionuclides of SSFL origin, then it would have been reflected in the surface soil concentrations. Thus, sample locations 13 and 14, which had the highest PM₁₀ deposition would have been expected to have the highest concentration of radionuclides. But that was not the case. The highest concentrations were generally observed at location 8 and 11 for the uranium series radionuclides, locations 2, 3, 4, and 5 for the thorium series, and location 5 for ¹³⁷Cs. Cesium-137, in particular, would have shown the strongest deposition signature in the plume because it has the highest measured soil concentrations on the SSFL. Instead the measured ¹³⁷Cs concentrations in all soil samples reflect deposition amounts consistent with global weapons fallout.

5.3.4. Summary of Findings from Sampling Analysis

Radionuclides exist in the environment independent of SSFL operations, including those that occur naturally and those that may have been introduced as part of global weapons testing fallout. As a result, background concentrations of many radionuclides are expected to be found in soil samples collected anywhere. Because background levels can vary geographically, the EPA BTVs (background levels) developed for the geologic formations in the SSFL area were used to evaluate whether there was any indication of concentrations above what would normally be expected in the environment around SSFL. Sampling was conducted in geologic formations that were not sampled as part of the EPA background study and were shown to have background radionuclide concentrations that differed from those sampled by the EPA.

If SSFL-derived radionuclides were released from vegetation and surface soil during the fire, then they would be expected to follow the transport and deposition of similar particulate matter that is naturally emitted during the fire. Comparison of predicted and observed particulate matter concentrations at on-site sampling locations indicated that FEPS and CALPUFF provide a reliable model for the emission, transport, and deposition of particulate matter from the fire. The plume deposition footprint using the FEPS and CALPUFF model was about the same as the footprint published in the DTSC report for the Woolsey Fire, which provides a second check on the FEPS/CALPUFF modeling. Furthermore, measurements made by EPA and reported in the DTSC report also concluded that there was no evidence of radionuclides in off-site soil and sediment of SSFL origin in the Bell Canyon community.

In addition to making comparisons to background, two other observations are important to consider in determining whether there is any evidence of impacts from the fire on the surface soils in the region impacted by deposition plume from the Woolsey Fire burning on the SSFL. The first observation is an evaluation of the data spatially based on the sample locations and their proximity to the deposition footprint from the Woolsey Fire (see Figure 5-7). If the Woolsey Fire had resulted in measurable deposition of radionuclides specific to the SSFL at downwind locations, concentrations would be expected to be greater in the zones of maximum deposition. The data did not support this assertion. It was shown that a hypothetical release of ¹³⁷Cs, ⁹⁰Sr, or ²³⁹Pu from the fire that would result in an annual dose of 0.1 mrem would be detected above background in the surface soil. No such concentrations were observed in the sampling. Furthermore, the highest

measured ¹³⁷Cs soil concentrations were observed *outside* the plume. All ¹³⁷Cs soil concentrations were below the EPA BTV. The second observation is an evaluation of the data by sample depth. If the Woolsey Fire had a measurable impact at downwind locations, concentrations would be expected to be greater in the 0–3 cm surface layer than in lower layers (i.e., 3–6 and 6–12 cm). For ¹³⁷Cs, higher concentrations are expected in the surface soil layer for locations undisturbed since global fallout occurred because ¹³⁷Cs was deposited on the surface and has limited mobility to migrate downward into the soil other than by mechanical disturbance (e.g., flooding, plowing, development). Likewise, radium, thorium, and—under reducing conditions—uranium have low mobility in soil. The highest concentrations of these radionuclides were observed at location 11 and well outside the plume. Sample depth profiles showed the concentration was roughly uniform with depth; thus, the higher concentrations reflect the geologic formation and not atmospheric deposition. The variability in naturally occurring radionuclides in the different geologic formations sampled was observed in the sampling.

6. Conclusions

We found no evidence of SSFL impact in off-site soils as a result of the Woolsey Fire. Computer modeling of the fire progression identified Oak Park as the area where the most particulate matter (PM_{10}) would have deposited while the Woolsey Fire burned on the SSFL. The community of Oak Park is located about 6 km southwest of the SSFL and there was no evidence of SSFL-derived radionuclides in the soils collected in this area. Any locations farther southwest toward the coast such as in the community of Malibu would have significantly less PM_{10} deposition from the Woolsey Fire burning on the SSFL (estimated to be about a factor of 5 less) because of atmospheric dilution, dispersion, and plume depletion, and thus lower impacts than those at Oak Park. We confirmed that the soil sampling analysis for our study had the ability to detect concentrations of radionuclides that would have resulted in doses to residents one thousand times smaller than the regulatory dose limits. Moreover, we found no impact on the off-site soils we sampled from past operations of the SSFL.

7. References

- AI (Atomics International). 1960. Environmental Monitoring Annual Report for 1959. June.
- Anderson, G.K., D.V. Sandberg, and R.A. Norheim. 2004. Fire Emission Production Simulator (FEPS) User's Guide. USDA Forest Service Pacific Northwest Research Station, Joint Fire Science Program (98-1-9-05). Available at http://www.fs.fed.us/pnw/fera/feps/.

Bevington, P.R. and D.K. Robinson. 1992. *Data Reduction and Error Analysis for the Physical Sciences*. New York: McGraw-Hill Inc.

- Boeing. 2001. Site Environmental Report for Calendar Year 2000, DOE Operations at The Boeing Company Rocketdyne Propulsion & Power. RD01-152. September.
- Boeing. 2005. Site Environmental Report for Calendar Year 2004, DOE Operations at The Boeing Company Santa Susana Field Laboratory. RD05-176. September.
- Boeing. 2006. Site Environmental Report for Calendar Year 2005, DOE Operations at The Boeing Company Santa Susana Field Laboratory. September.
- Boeing. 2008. Site Environmental Report for Calendar Year 2007, DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV. September.
- Boeing. 2018. Particulate Matter Monitoring Data. PMData-PostFire 20181120 Boeing.xlsx.
- Browne, E. and R.B. Firestone. 1986. *Table of Radioactive Isotopes*. Edited by Virginia Shirley. New York: John Wiley & Sons, Inc.
- CAL FIRE (California Department of Forestry and Fire Protection). 2019. Incident Report. Available at <u>https://www.fire.ca.gov/incidents/2018/11/8/woolsey-fire/</u>. Accessed August 21, 2019.
- Chang, J.C. and S.R. Hanna. 2004. "Air Quality Model Performance Evaluation." *Meteorology and Atmospheric Physics* 87: 167–196.
- Choppin, G.R. and J. Rydberg. 1983. *Nuclear Chemistry Theory and Application*. New York: Pergamon Press.
- Citygate (Citygate Associates, LLC). 2019. City of Los Angeles: After Action Review of the Woolsey Fire Incident. Citygate Associates, LLC, Folsom, CA.
- Deeming, J.E., R.E. Burgan, and J.D. Cohen. 1977. *The National Fire Danger Rating System-1978*. General Technical Report INT-39. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.
- DOE (U.S. Department of Energy). 2011a. *Derived Concentration Technical Standard*. DOE-Std-1196-2011. U.S. Department of Energy, Washington, D.C.
- DOE. 2011b. *Radiation Protection of the Public and Environment*. DOE Order 458.1. U.S. Department of Energy, Washington, D.C. February.
- DTSC (Department of Toxic Substance Control). 2018. DTSC Interim Summary Report of Woolsey Fire. California Environmental Protection Agency. December.
- Efurd, D.W., G.W. Knobeloch, R.E. Perrin, and D.W. Barr. 1982. *Neptunium-237 Production from Atmospheric Nuclear Testing*. LA-9585-MS. Los Alamos National Laboratory, Los Alamos, NM.
- Feely, H.W., I.K. Helfer, Z.R. Juzdan, C.S. Klusek, R.J. Larsen, R. Leifer, C.G. Sanderson, and M Dreicer. 1988. "Fallout in the New York Metropolitan Area Following the Chernobyl Accident." *Journal of Environmental Radioactivity* 7 (2): 177–191.
- Grogan, H.A., J.W. Aanenson, P.D. McGavran, K.R. Meyer, H.J. Mohler, S. S. Mohler, J.R. Rocco, A.S. Rood, and J.E. Till. 2007. "Modeling of the Cerro Grande Fire at Los Alamos: An

Independent Analysis of Exposure, Health Risk, and Communication with the Public." In: T.M. Semkow, S.Pomme, S.M. Jerome, and D.J. Strom, Eds. *Applied Modeling and Computations in Nuclear Science*. ACS Symposium Series 945, American Chemical Society, Washington, D.C.

- HydroGeologic (HydroGeologic, Inc.). 2011. Final Radiological Background Study Report Santa Susana Field Laboratory Ventura County, California. Prepared for U.S. Environmental Protection Agency Region 9. EPA Contract No: EP-S3-07-05. October.
- HydroGeologic. 2012. Final Technical Memorandum Look-Up Table Recommendations, Santa Susana Field Laboratory Area IV Radiological Study. Technical Memorandum from L. Steven Vaughn, HGL Project Manager to Andrew Bain, EPA Region 9. November.
- Ibrahim, S.A., S.B. Webb, and F.W. Whicker. 1997. "Contributions of Rocky Flats Releases to the Total Plutonium in Regional Soils." *Health Physics* 72 (1): 42–48.
- Knoll, G.F. 2010. Radiation Detection and Measurement, 3rd edition. John Wiley & Sons, Inc.
- LA County. 2019. Los Angeles County GIS Data Portal. Available at <u>https://egis3.lacounty.gov/dataportal/2018/11/21/woolsey-fire-nov-2018-gis-data-applications/</u>. Accessed June 19, 2019.
- Lambert, G., M.F. Le Cloarec, B. Ardouin, and B. Bonsang. 1991. "Long-lived Radon Daughters Signature of Savanna Fires." In *Global Biomass Burning*. Edited by Joel S. Levine. Cambridge, MA: MIT Press. 181–184.
- Le Cloarec, M.F., B. Ardouin, H. Cachier, C. Liousse, S. Neveu, and E.-Y. Nho. 1995. "²¹⁰Po in Savanna Burning Plumes." *Journal of Atmospheric Chemistry* 22: 111–122.
- Moore, J.D. 1986. Rocketdyne Division Environmental Monitoring Annual Report, De Soto and Santa Susana Field Laboratories Sites 1985. Rockwell International. RI/RD86-140. April.
- Moore, J.D. 1990. Rocketdyne Division Environmental Monitoring Annual Report, De Soto and Santa Susana Field Laboratories Sites 1989. Rockwell International. RI/RD90-132. May.
- Nance, J.D., P.V. Hobbs, and L.F. Radke. 1993. "Airborne Measurements of Gases and Particles from an Alaskan Wildfire." *Journal of Geophysical Research* 98 (D8): 14,873–14,882.
- NASA/Boeing/DOE. 2017. Baseline Air Monitoring Work Plan. Santa Susana Field Laboratory, Ventura County, CA. June.
- NASA. 2019. Particulate Matter Monitoring Data. NASAPMFireData_20190208.xlsx.
- NCRP (National Council on Radiation Protection and Measurements). 2009. *Ionizing Radiation Exposure of Population of the United States*. NCRP Report No. 160. National Council on Radiation Protection and Measurements, Bethesda, MD.
- North Wind (North Wind, Inc.). 2015. Annual Site Environmental Report for Calendar Year 2014, Department of Energy Operations at the Energy Technology Engineering Center – Area IV Santa Susana Field Laboratory. North Wind, Inc., Idaho Falls, ID. May.
- North Wind. 2018. Annual Site Environmental Report for Calendar Year 2017, Department of Energy Operations at the Energy Technology Engineering Center – Area IV Santa Susana Field Laboratory. North Wind, Inc., Idaho Falls, ID. March.
- North Wind. 2019a. *Radioactive Particulate Air Sampling Results Associated with the Woolsey Fire*. North Wind, Inc., Idaho Falls, ID. January.
- North Wind. 2019b. Report on Quarterly Air Monitoring, Area IV, Third Quarter 2018-2019. Santa Susana Field Laboratory, Ventura County, California. North Wind Inc., Idaho Falls, ID. June.

- NRC (U.S. Nuclear Regulatory Commission). 2010. Monitoring and Reporting Radioactive Materials in Liquid and Gaseous Effluents from Nuclear Fuel Cycle Facilities. Regulatory Guide 4.16, Rev. 2. December.
- Ornduff, R. 1974. Introduction to California Plant Life. University of California Press.
- Piekarz, M., A. Komosa. 2014. "Rapid Method for Plutonium-241 Determination in Soil Samples." Journal of Radioanalytical and Nuclear Chemistry 299: 2019–2021.
- Robinson, K.S. 1998. Rocketdyne Propulsion & Power DOE Operations Annual Site Environmental Report 1997. A4CM-ZR-0012. November.
- Rockwell International. 1991. Rocketdyne Division Environmental Monitoring Annual Report Santa Susana Field Laboratory, De Soto, and Canoga Sites 1990. RI/RD91-136. June.
- Rockwell International. 1992. Rocketdyne Division Environmental Monitoring Annual Report Santa Susana Field Laboratory, De Soto, and Canoga Sites 1991. RI/RD92-138. December.
- Rockwell International. 1994. Rocketdyne Division Environmental Monitoring Annual Report Santa Susana Field Laboratory, De Soto, and Canoga Sites 1993. RI/RD94-126. October.
- Rood, A.S., P.G. Voilleque, S.K. Rope, H.A. Grogan, and J.E. Till. 2008. "Reconstruction of Atmospheric Concentrations and Deposition of Uranium and Decay Products Released from the Former Uranium Mill at Uravan, Colorado." *Journal of Environmental Radioactivity* 99: 1258–1278.
- Rutherford, P. 2019. Technical Memorandum: Boeing's Radiological Air Monitoring Data Associated with the Woolsey Fire. February 8.
- Sapere Consulting and Boeing (Sapere Consulting, Inc., and The Boeing Company). 2005. *Historical Site Assessment of Area IV Santa Susana Field Laboratory Ventura County, California: Volume 1 – Methodology*. Prepared for the Department of Energy. May. https://www.etec.energy.gov/Library/Main/SSFLAreaIVHSAVolume%201.pdf.
- Scire J.S., D.G. Strimaitis, and R.J. Yamartino. 2000. A User's Guide for the CALPUFF Dispersion Model. Earth Tech Inc., Concord, MA.
- SSFL (Santa Susana Field Laboratory). 1996. Area IV Radiological Characterization Study, Final Report, Volume 1. A4CM-ZR-0011, Revision A. Rocketdyne Division, Rockwell International. August.
- Turner, D.B. 1964. "A Diffusion Model for an Urban Area." *Journal of Applied Meteorology* 3: 83–91.
- Webb, S.B. 1996. *The Spatial Distribution and Inventory of*²³⁹*Pu East of the Rocky Flats Plant*. Ph.D. dissertation. Colorado State University, Fort Collins, CO.
- Wetherbee, G.A., T.M. Debey, M.A. Nilles, C.M.B. Lehmann, and D.A. Gay. 2011. Fission Products in National Atmospheric Deposition Program–Wet Deposition Samples Prior to and Following the Fukushima Dai-Ichi Nuclear Power Plant Incident, March 8–April 5, 2011. USGS Open File Report 2011-1277. United States Geologic Survey, Reston, VA.
- Wetherbee, G.A., D.A. Gay, T.M. Debey, C.M.B. Lehmann, and M.A. Nilles. 2012. "Wet Deposition of Fission-Product Isotopes to North America from the Fukushima Dai-Ichi Incident March 2011." *Environmental Science & Technology* 46 (5): 2574–2582.
- Whicker, F.W. and V. Shultz. 1982. *Radioecology: Nuclear Energy and the Environment*. Boca Raton, FL: CRC Press.
- Wildfire Today. 2019. Woolsey Fire News. Available at <u>https://wildfiretoday.com/?s=Woolsey+Fire&monthnum=11&year=2018&states_provinces=</u> <u>111&countries=&topics=</u>. Accessed June 19, 2019.

- Yang, G., J. Zheng, K Tagami, and S. Uchida. 2015. "Plutonium Concentration and Isotopic Ratio in Soil Samples from Central-Eastern Japan Collected Around the 1970s." *Scientific Reports* 5: 9636 DOI: 10.1038/srep09636.
- Yerks, R.F. and R.H. Campbell. 2005. *Preliminary Geologic Map of the Los Angeles 30'×60' Quadrangle, Southern California.* USGS Open File Report 2005-1019. U.S. Department of the Interior, Geologic Survey, Washington, D.C.
- Zheng, J., K. Tagami, Y. Watanabe, S. Uchida, T. Aono, N. Ishii, S. Yoshida, Y. Kubota, S. Fuma, and S. Ihara. 2012. "Isotopic Evidence of Plutonium Release into the Environment from the Fukushima DNPP Accident." *Scientific Reports* 2: 304 DOI: 10.1038/srep00304.

Appendix A. Sample Label and Collection Sheets

This appendix contains an example of the sample label affixed to each sample container, the completed original sample collection sheets, and the transcribed sample sheets.

Example of Sample Label

RAC SSFL Sampling Project	
Sample ID:	
Sample Type:	
Sample Location Number:	
Depth (cm) Area (cm ²)	
Date/Time Collected	
Sample Collected By:	

Figure A-1. Sample label that was affixed to each sample container.

Page /	_			_			-		Com	
Sample	Sample Location					Depth	Area (cm ²)	Sampler(s)	Exposure Pate (uP/br)	Notes
D	ID	Lat (dd)	Long (dd)	Date	Time	(cm)	Area (CIII)	N.C.	7400	Notes
10A	10	34104059	118 40 48,54	8/5/17	1.19	5 Am	2515	an	2300	A Contraction of the second
OB	10	11	11	11	aito	4-17 CM	12.5217.5	ASR	2400	
DC I A AN	10	25 17 2-134	-1006500	2/5/19	10-111	3 000	25×25	CM	2800	(B. L. R. M. B. B. B.
AB	1	11 15 - 17 14	17 18	9-11	10:35	3-6 m	25×25	ASR	2800	
AI	a	11	14	1	1105	e-izan	たまれたち	ASR	2002	10101
60	6	34 13933	-118.7096	8519	1230	Zan	25×25	ASR	3300	Sandy Fluvial
GB	6	11	0		1243	3-leam	25×25	ASR	3700	Clay on C 6 cm
60	6	ti.		int .	1741	6-12	12\$ 125	ALD	3100	
Ga	4	34.17934	-118.69665	859	1400	3 am	2525	Cm	3000	
36	8	11		All the C	JUR	3-6am	USXUS	0.11	1200	
BC	B	1.	11	cr ,	420	(e-izon	125×120	OV.	3700	16 A. 50
I A	11	34.15082	-118,61602	8/5/19	1820	Sam	CSACS	an	7400	- Berner
18	11	3 r	1.	1 Peter	1205	3-4 cm	23.0	an	500	- Ch.
IL	n	۰.	· ·	1000	1837	G-ICom	12.5 410-	In	3400	
B -	n	۱۲ ۲.	**	20010	1837	G-120m	12.5×12.5	an	3400	

Completed Sample Sheets

Figure A-2. Sample sheet for August 5, 2019.

Sample	Sample Location				1	Depth		Sampler(s)	C PM Exposure	
171	1-7		Long (dd)	Date	Time	(cm)	Area (cm ²)	initials	Rate (µR/hr)	Notes
he.	11	24.13194	-118.13317	8519	1940	3	25+25	cm	2400	Poor 1 (on solida
110	17				1950	3-le	75×75	cm	0005	Sandstone
TIC	11	11		7	1957	6-12	12.5×12.5	cm	2200	
CAR	L	241.2193	-18.81433	8/6/19	0730	3	25×75	an	3600	
213	2	11	11	8/4/19	0736	3-6	25 * 25	CM	3700	
26	2	× 1	11	8/6/19	5470	6-12	12.5×12.5	em	4000	
2A-5	2	0.0	۲	8/6/19	0750	3	25×25	an	3400	SPIH Sample
23-5	2	11	Part Parts V	8/6/19	0754	3-4	25×25	Cm	3700	4" apart
26-5	z	Y	1.	81619	0800	6-12	12.5×2.5	cm	4100	
3A	3	34.21086	-118, 7904H	2/6/19	0927	3	75×25	an	3900	
3B	3	11	1.	8/6/19	0133	3-6	25×25	an	3500	
30	3	10	1,	8619	0940	6-12	12.5×12.5	an	3500	vert Rater
NA	1	34.21306	-118,7701*	8/4/19	1020	3	25×25	om	3200	
UR	1			2/6/19	1025	3-6	25×25	cm	3200	
10	4	1		dilla	1020	6-12	125×12.5	Im	3300	

*-118.77671

Sample	Sample Location					Depth		Sampler(s)	Exposure	Notes	
ID	ID	Lat (dd)	Long (dd)	Date	Time	(cm)	Area (cm ²)	initials	Rate (µR/nr)	NOTES	
5A	5	341.21022	-118.76942	8/6/19	1104	3	Z5x25	an	3400	@ \	15 m
SB	5	11	3.3	2/6/19	1110	3-4	25×25	an	7500	of simple matrix	levner
SC	5	t.	+t	8/6/19	1115	6-12	12.5×12.5	m	2200		
14	1	34,26909	-118,63730	3/6/19	1327	3	25×25	Cm	3500		The set
13	1	17	at'	8/6/9	1333	3-6	2429	cm	3500		66
10	1	1.4	17	8/12/19	1337	6-12	125 \$ 125	am	9000		- Stan
1A-D	1	1.	- 1	8/6/19	1343	3	2525	an	2400		3032
10-0	1		21	8/6/19	1347	3-6	25,25	an	3400		132.0
16-0	I	K.	+2	8/6/19	1351	6-12	12.5212.5	am	400	and the second se	-
16-A	16	34,15430	-118,74819	8 6 19	1449	3	25*25	an	2700		- DI
16-B	16	11	"	8 4 19	1454	3-9	25×25	an	2500	1447-5	
16-6	16	1-	1-	8/6/19	1500	6-12	12.5+125	am	2700		-
13-A	3	341,18745	-118.74558	8/7/M	0712	3	25×25	on	3200	mole activity that	ushout s
13-B	13	11	10	8719	0715	3-4	25×15	an	3300	No observable trap	Tsin
13-6	12		*	871	10719	6-12	125×125	an	3400	A CONTRACT OF	Samp
					3010			Pl -			mati

		1 1	1.1.1		201 200	Depth	p. Sola	Sampler(s)	Exposure	
IE I	41.17887	Long (dd)	Da	te	Time	(cm)	Area (cm ²)	initials	Rate (µR/hr)	Notes
15	r'	- 118, [440	8	7/19	0745	3	25×15	cm	3000	
15	1 .		81	119	0751	3-4	25×25	cm	3000	and the second
14	21.1927 3	-110 -1110	8	119	0756	6-12	17.5 × 12:5	an	3400	
14	ir ir	"D.14140	SI	19	0830	3	25×25	cm	2500	at .
14			811	4	0824	3-6	25 25	an	200	
18 2	11.10700	10 TILEDE	81	14	USAU	6-12	12.5×125	an	2500	
B	11	-115, 148CS	851	M	0107	26	(5*25	an	2800	very \$ 10000 s
12	:	. **	8/1	TD	Dall	3-6	15+25	un	2700	
0			0 9	44	01/6	Q=1C	ICISKICS	an	3000	and the second
				-					1	
	-				-			2. 2		
		-		-				1 1 1 1		
			-					1	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Part and a state
			-				1			
					1 1 10 1		and a state of the	the second s	the second se	
7777	15 15 14 14 14 14 14 88 8	15 (* 15 * 14 341-1832-3 14 r 14 r 14 * 8 34.18288 8 * 10 15 15 16 17 17 18 18 18 18 18 18 18 18 18 18	15 (1) 15 (1) 14 34,1832 3 -118.74160 14 (1) 14 (1) 14 (1) 14 (1) 14 (1) 14 (1) 14 (1) 15 (1) 16 (1) 18 (1	15 11 18 15 1 18 14 24.1832 3 -118.74140 87 14 16 17 19 14 16 17 19 14 16 17 19 14 16 19 14 17 19 14 17 19 14 17 19 14 18 14 18288 -18,74888 8/7 18 14.18288 -18,74888 8/7 19 17 18 10 18	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Transcribed Sample Sheets

I age I										
Sample	Sample Location					Depth		Sampler(s)		
ID	ID	Lat (dd)	Long (dd)	Date	Time	(cm)	Area (cm ²)	initials	cpm	Notes
10A	10	34.17794167	-118.6787611	8/5/19	9:18	3	625		2400	Location coordinates
10B	10	34.17794167	-118.6787611	8/5/19	9:37	3-6	625		2300	
10C	10	34.17794167	-118.6787611	8/5/19	9:48	6-12	312.5		2400	
9A	9	34.18273	-118.68653	8/5/19	10:44	3	625		2800	
9B	9	34.18273	-118.68653	8/5/19	10:55	3-6	625		2800	
9C	9	34.18273	-118.68653	8/5/19	11:05	6-12	312.5		2900	
6A	6	34.18983	-118.70965	8/5/19	12:30	3	625		3300	Sandy-fluvial
6B	6	34.18983	-118.70965	8/5/19	12:43	3-6	625		3700	Clay@6cm
6C	6	34.18983	-118.70965	8/5/19	12:51	6-12	312.5		3700	
8A	8	34.17931	-118.69665	8/5/19	14:00	3	625		3000	
8B	8	34.17931	-118.69665	8/5/19	14:12	3-6	625		3300	
8C	8	34.17931	-118.69665	8/5/19	14:20	6-12	312.5		3200	
11A	11	34.15082	-118.61602	8/5/19	18:20	3	625		3200	
11B	11	34.15082	-118.61602	8/5/19	18:31	3-6	625		3400	
11C	11	34.15082	-118.61602	8/5/19	18:37	6-12	312.5		3400	

Page 1

Ροσο	2
1 420	4

Sample ID	Sample Location ID	Lat (dd)	Long (dd)	Date	Time	Depth (cm)	Area (cm ²)	Sampler(s) initials	cpm	Notes
17A	17	34.13194	-118.73577	8/5/19	19:40	3	625		2400	poorly consolidated
17B	17	34.13194	-118.73577	8/5/19	19:50	3-6	625		2000	sandstone
17C	17	34.13194	-118.73577	8/5/19	19:57	6-12	312.5		2200	
2A	2	34.2193	-118.81433	8/6/19	07:30	3	625		3600	
2B	2	34.2193	-118.81433	8/6/19	07:36	3-6	625		3700	
2C	2	34.2193	-118.81433	8/6/19	07:42	6-12	312.5		4000	
2A-S	2	34.2193	-118.81433	8/6/19	07:50	3	625		3600	split sample taken 4 in apart
2B-S	2	34.2193	-118.81433	8/6/19	07:54	3-6	625		3700	
2C-S	2	34.2193	-118.81433	8/6/19	08:00	6-12	312.5		4100	
3A	3	34.21086	-118.79044	8/6/19	09:27	3	625		3900	
3B	3	34.21086	-118.79044	8/6/19	09:33	3-6	625		3500	
3C	3	34.21086	-118.79044	8/6/19	09:40	6-12	312.5		3500	very rocky
4A	4	34.21306	-118.77671	8/6/19	10:20	3	625		3200	
4B	4	34.21306	-118.77671	8/6/19	10:25	3-6	625		3200	
4C	4	34.21306	-118.77671	8/6/19	10:30	6-12	312.5		3300	

Page 3

I age e										
Sample ID	Sample Location ID	Lat (dd)	Long (dd)	Date	Time	Depth (cm)	Area (cm ²)	Sampler(s) initials	cpm	Notes
5A	5	34.21022	-118.76942	8/6/19	11:04	3	625		3400	
5B	5	34.21022	-118.76942	8/6/19	11:10	3-6	625		3300	Rodent hole encountered @ corner of sample matrix
5C	5	34.21022	-118.76942	8/6/19	11:15	6-12	312.5		3900	•
1A	1	34.26809	-118.63730	8/6/19	13:27	3	625		3300	
1B	1	34.26809	-118.63730	8/6/19	13:33	3-6	625		3500	
1C	1	34.26809	-118.63730	8/6/19	13:37	6-12	312.5		4000	
1A-D	1	34.26809	-118.63730	8/6/19	13:43	3	625		3400	
1B-D	1	34.26809	-118.63730	8/6/19	13:47	3-6	625		3400	
1C-D	1	34.26809	-118.63730	8/6/19	13:51	6-12	312.5		3400	
16A	16	34.15430	-118.74819	8/6/19	14:49	3	625		2700	
16B	16	34.15430	-118.74819	8/6/19	14:54	3-6	625		2500	
16C	16	34.15430	-118.74819	8/6/19	15:00	6-12	312.5		2700	
13A	13	34.18745	-118.74558	8/7/19	07:12	3	625		3200	mole activity throughout site but no observable trails in sample matrix
13B	13	34.18745	-118.74558	8/7/19	07:15	3-6	625		3300	
13C	13	34.18745	-118.74558	8/7/19	07:19	6-12	312.5		3400	

Page	4
------	---

Sample ID	Sample Location ID	Lat (dd)	Long (dd)	Date	Time	Depth (cm)	Area (cm ²)	Sampler(s) initials	cpm	Notes
15A	15	34.17887	-118.74424	8/7/19	07:45	3	625		3000	
15B	15	34.17887	-118.74424	8/7/19	07:51	3-6	625		3000	
15C	15	34.17887	-118.74424	8/7/19	07:56	6-12	312.5		3400	
14A	14	34.18323	-118.74160	8/7/19	08:30	3	625		2500	
14B	14	34.18323	-118.74160	8/7/19	08:34	3-6	625		2400	
14C	14	34.18323	-118.74160	8/7/19	08:40	6-12	312.5		2500	
18A	18	34.18288	-118.74828	8/7/19	09:07	3	625		2800	Very loose soil
18B	18	34.18288	-118.74828	8/7/19	09:12	3-6	625		2700	
18C	18	34.18288	-118.74828	8/7/19	09:16	6-12	312.5		3000	

Appendix B. Analytical Results from the Laboratories

This appendix contains the complete analytical results from GEL laboratories (Table B-1) and from Test America (Table B-3). Table B-2 provides the case narratives for GEL results with the "X" data qualifier.

	1 401	t D I. Complete I	Courts II office		1001 ator	J	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
1 A	09/26/19	Actinium-225	0.104	1.64	2.45	U	PCI/G
1 A	09/26/19	Actinium-227	0.0272	0.0531	0.0798	U	PCI/G
1 A	09/26/19	Actinium-228	1.59	0.0676	0.0359		PCI/G
1 A	09/26/19	Antimony-125	-0.00456	0.0166	0.0267	U	PCI/G
1 A	09/26/19	Barium-137m	0.0545	0.00843	0.00908		PCI/G
1 A	09/26/19	Bismuth-212	1.72	0.186	0.125		PCI/G
1 A	09/26/19	Bismuth-213	0.0198	0.0167	0.03	U	PCI/G
1 A	09/26/19	Bismuth-214	1.17	0.0346	0.0176		PCI/G
1 A	09/26/19	Cesium-134	0	0.0119	0.0163	UI	PCI/G
1 A	09/26/19	Cesium-137	0.0575	0.0089	0.0096		PCI/G
1 A	09/26/19	Cobalt-60	-0.00037	0.00554	0.0099	U	PCI/G
1 A	09/26/19	Europium-152	-0.0154	0.0162	0.0282	U	PCI/G
1 A	09/26/19	Europium-154	-0.00538	0.0196	0.0322	U	PCI/G
1 A	09/26/19	Europium-155	0	0.0439	0.0443	UI	PCI/G
1 A	09/26/19	Holmium-166m	-0.00091	0.00936	0.016	U	PCI/G
1 A	09/26/19	Lead-210	0.47	1.9	2.08	U	PCI/G
1 A	09/26/19	Lead-212	1.55	0.0277	0.0185		PCI/G
1 A	09/26/19	Lead-214	1.36	0.0403	0.0661		PCI/G
1 A	09/26/19	Neptunium-239	0.0986	0.0962	0.109	U	PCI/G
1 A	09/26/19	Niobium-94	0.0053	0.00522	0.00921	U	PCI/G
1 A	09/26/19	Potassium-40	23.7	0.361	0.0749		PCI/G
1 A	09/26/19	Promethium-147	-157	188	308	U	PCI/G
1 A	09/26/19	Protactinium-231	0	0.136	0.143	UI	PCI/G
1 A	09/26/19	Radium-226	1.17	0.0346	0.0176		PCI/G
1 A	09/26/19	Radium-228	1.59	0.0676	0.0359		PCI/G
1 A	09/26/19	Sodium-22	-0.00256	0.00706	0.0116	U	PCI/G
1 A	09/26/19	Tellurium-125m	1.98	4.01	6.22	U	PCI/G
1 A	09/26/19	Thallium-208	0.488	0.0186	0.00947		PCI/G
1 A	09/26/19	Thorium-231	0.0603	0.12	0.194	U	PCI/G
1 A	09/26/19	Thorium-234	1.05	0.619	0.673		PCI/G
1 A	09/26/19	Thulium-171	-5.28	6.2	10.4	U	PCI/G
1 A	09/26/19	Tin-126	0	0.034	0.0301	UI	PCI/G
1 A	09/26/19	Strontium-90	0.00143	0.00637	0.011	U	PCI/G
1 A	09/26/19	Yttrium-90	0.00143	0.00637	0.011	U	PCI/G
1 A	10/02/19	Nickel-59	-0.774	1.13	1.93	U	PCI/G
1 A	10/05/19	Americium-241	0.0167	0.0153	0.02	U	PCI/G
1 A	10/05/19	Americium-243	0.0128	0.0172	0.0279	U	PCI/G
1 A	10/05/19	Curium-243/244	0.0103	0.0134	0.0198	U	PCI/G
1 A	10/05/19	Curium-245/246	0	0.00831	0.0162	U	PCI/G
1 A	10/03/19	Polonium-210	1.36	0.236	0.121		PCI/G
1 A	10/03/19	Thorium-228	1.29	0.21	0.151		PCI/G
1 A	10/03/19	Thorium-229	0.0433	0.0824	0.143	U	PCI/G
1 A	10/03/19	Thorium-230	0.971	0.176	0.122		PCI/G
1 A	10/03/19	Thorium-232	1.16	0.186	0.103		PCI/G
1 A	10/01/19	Uranium-232	0.00352	0.053	0.0972	U	PCI/G
1 A	10/01/19	Uranium-233/234	0.878	0.111	0.0496		PCI/G
1 A	10/01/19	Uranium-235/236	0.0794	0.0364	0.0331		PCI/G
1 A	10/01/19	Uranium-238	0.895	0.113	0.061		PCI/G
1 A	10/01/19	Neptunium-236	-0.00373	0.00825	0.0203	U	PCI/G
1 A	10/01/19	Plutonium-236	-0.00373	0.00825	0.0203	U	PCI/G
1 A	10/01/19	Plutonium-239/240	0.00522	0.0111	0.0196	U	PCI/G
1 A	10/01/19	Plutonium-242	0.00269	0.0102	0.0194	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Table B-1. Complete Results from the GEL Laboratory									
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Oualifier ^b	Units		
1 A	10/01/19	Plutonium-244	0.00351	0.00754	0.0124	U	PCI/G		
1 A	10/03/19	Neptunium-237	-0.00291	0.00879	0.0247	U	PCI/G		
1 A	10/06/19	Plutonium-241	-1.09	1.52	2.66	U	PCI/G		
1 A	09/25/19	Actinium-225	-2.36	1.67	2.8	U	PCI/G		
1 A	09/25/19	Actinium-227	0.00182	0.0678	0.104	Ū	PCI/G		
1 A	09/25/19	Actinium-228	1.62	0.0746	0.0449	0	PCI/G		
1 A	09/25/19	Antimony-125	0.013	0.0202	0.0346	U	PCI/G		
1 A	09/25/19	Barium-137m	0.0645	0.0125	0.0516	0	PCI/G		
1 4	09/25/19	Bismuth-212	1.87	0.0125	0.0116		PCI/G		
1 4	09/25/19	Bismuth-213	-0.000869	0.223	0.0375	IJ	PCI/G		
1 A	09/25/19	Bismuth-214	1.2	0.0223	0.0238	0	PCI/G		
1 4	09/25/19	Cesium-134	0	0.0411	0.0230	Ш	PCI/G		
1 A	09/25/19	Cesium-137	0.0682	0.0101	0.0123	01	PCI/G		
1 A	09/25/19	Cobalt-60	0.0032	0.0132	0.0123	I	PCI/G		
1 A	09/25/19	Europium 152	0.00117	0.00070	0.0125	U	PCI/G		
	09/25/19	Europium 154	0.00117	0.0222	0.0339	U	PCI/G		
	09/25/19	Europium 155	0.0191	0.0234	0.0402	U	DCI/G		
1 A 1 A	09/25/19	Holmium 166m	0.00222	0.0301	0.0024		PCI/G		
1 A	09/25/19	L and 210	-0.00222	0.0113	2.25				
1 A	09/25/19		1.5	4.21	0.0222	01	PCI/G		
1 A	09/25/19		1.5	0.0318	0.0233		PCI/G		
I A	09/25/19	Lead-214	1.33	0.0445	0.0205	TT	PCI/G		
I A	09/25/19	Neptunium-239	-0.0425	0.086	0.149	<u> </u>	PCI/G		
I A	09/25/19	Niobium-94	0.0107	0.0109	0.0118	U	PCI/G		
I A	09/25/19	Potassium-40	22.6	0.399	0.0956	* *	PCI/G		
I A	09/25/19	Promethium-147	23.4	241	419	<u> </u>	PCI/G		
I A	09/25/19	Protactinium-231	0	0.169	0.183	UI	PCI/G		
I A	09/25/19	Radium-226	1.2	0.0411	0.0238		PCI/G		
1 A	09/25/19	Radium-228	1.62	0.0746	0.0449		PCI/G		
1 A	09/25/19	Sodium-22	0.00673	0.00913	0.0144	U	PCI/G		
1 A	09/25/19	Tellurium-125m	4.42	5.41	8.58	U	PCI/G		
1 A	09/25/19	Thallium-208	0.493	0.0208	0.0125		PCI/G		
1 A	09/25/19	Thorium-231	-0.106	0.164	0.243	U	PCI/G		
1 A	09/25/19	Thorium-234	1.37	0.937	1.15		PCI/G		
1 A	09/25/19	Thulium-171	-7.25	13.4	21.2	U	PCI/G		
1 A	09/25/19	Tin-126	0	0.0449	0.0466	UI	PCI/G		
1 A	09/28/19	Iodine-129	-0.0825	0.209	0.475	U	PCI/G		
1 A	09/26/19	Iron-55	0.503	3.13	4.81	U	PCI/G		
1 A	09/26/19	Nickel-63	-0.0338	0.456	0.783	U	PCI/G		
1 A	09/25/19	Technetium-99	-0.109	0.293	0.502	U	PCI/G		
1 A	09/27/19	Tritium	-1.17	2.13	3.99	U	PCI/G		
1 A	09/28/19	Carbon-14	-0.123	1.46	2.57	U	PCI/G		
1 A	10/03/19	Strontium-90	-0.0000586	0.00851	0.0149	U	PCI/G		
1 A	10/03/19	Yttrium-90	-0.0000586	0.00851	0.0149	U	PCI/G		
1 A	10/01/19	Nickel-59	-0.0055	0.633	1.04	U	PCI/G		
1 A	10/05/19	Americium-241	0.00694	0.0136	0.0233	U	PCI/G		
1 A	10/05/19	Americium-243	-2.81E-09	0.0155	0.0298	U	PCI/G		
1 A	10/05/19	Curium-243/244	0.00344	0.00675	0.00516	U	PCI/G		
1 A	10/05/19	Curium-245/246	0	0.00542	0.00586	U	PCI/G		
1 A-D	09/25/19	Technetium-99	0.0246	0.429	0.729	U	PCI/G		
1 A-D	09/27/19	Carbon-14	0.0723	1.71	2.96	U	PCI/G		
1 A-D	09/27/19	Carbon-14	100	3.23	2.92		%		
1 A-D	09/26/19	Actinium-225	-1.19	1.75	2.8	U	PCI/G		
1 A-D	09/26/19	Actinium-227	0.0392	0.0632	0.0948	U	PCI/G		
1 A-D	09/26/19	Actinium-228	1.58	0.0788	0.0425		PCI/G		
1 A-D	09/26/19	Antimony-125	0.0171	0.0175	0.0313	U	PCI/G		
1 A-D	09/26/19	Barium-137m	0.0969	0.0126	0.0111		PCI/G		
1 A-D	09/26/19	Bismuth-212	1.81	0.253	0.145		PCI/G		
1 A-D	09/26/19	Bismuth-213	0.00505	0.0194	0.034	U	PCI/G		
1 A-D	09/26/19	Bismuth-214	11	0.043	0.0205		PCI/G		
1 A-D	09/26/19	Cesium-134	0	0.0173	0.0188	UI	PCI/G		

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
1 A-D	09/26/19	Cesium-137	0.102	0.0133	0.0118		PCI/G
1 A-D	09/26/19	Cobalt-60	0.00682	0.0069	0.0127	U	PCI/G
1 A-D	09/26/19	Europium-152	-0.0294	0.0202	0.0328	U	PCI/G
1 A-D	09/26/19	Europium-154	-0.022	0.0286	0.0393	U	PCI/G
1 A-D	09/26/19	Europium-155	0	0.0395	0.0492	UI	PCI/G
1 A-D	09/26/19	Holmium-166m	-0.00281	0.0113	0.019	U	PCI/G
1 A-D	09/26/19	Lead-210	2.57	3.09	3.54	U	PCI/G
1 A-D	09/26/19	Lead-212	1.55	0.0313	0.021		PCI/G
1 A-D	09/26/19	Lead-214	1.33	0.0435	0.0728		PCI/G
1 A-D	09/26/19	Neptunium-239	0	0.108	0.123	UI	PCI/G
1 A-D	09/26/19	Niobium-94	0.00745	0.00824	0.0107	U	PCI/G
1 A-D	09/26/19	Potassium-40	23	0.417	0.0935	_	PCI/G
1 A-D	09/26/19	Promethium-147	-117	210	347	U	PCI/G
1 A-D	09/26/19	Protactinium-231	0	0.155	0.161	UI	PCI/G
1 A-D	09/26/19	Radium-226	11	0.043	0.0205		PCI/G
1 A-D	09/26/19	Radium-228	1.1	0.0788	0.0205		PCI/G
1 A-D	09/26/19	Sodium-22	-0.00836	0.0103	0.0423	II	PCI/G
1 A-D	09/26/19	Tellurium-125m	3 21	4 14	6 99	<u> </u>	PCI/G
	09/26/19	Thallium-208	0.405	0.0206	0.99	0	PCI/G
1 A.D	09/26/10	Thorium 221	0.493	0.0200	0.011	ΤI	PCI/G
	09/26/19	Thorium 224	1.109	0.133	0.222	U	PCI/G
	09/20/19	Thulium 171	1.21	0.803	15 1	TT	PCI/G
	09/20/19	Tin 126	-0.337	0.0292	0.0251		PCI/G
	09/20/19	110-120 Jadina 120	0.0(47	0.0382	0.0351		PCI/G
I A-D	09/28/19	10dine-129	-0.064/	0.198	0.40	U	PCI/G
I A-D	10/01/19	Polonium-210	1.04	0.24	0.146		PCI/G
I A-D	09/29/19	Thorium-228	1.42	0.208	0.136	* *	PCI/G
I A-D	09/29/19	Thorium-229	0.0333	0.0626	0.108	U	PCI/G
I A-D	09/29/19	Thorium-230	1.22	0.18	0.0735		PCI/G
I A-D	09/29/19	Thorium-232	1.25	0.179	0.0199	* *	PCI/G
I A-D	09/28/19	Uranium-232	-0.034/	0.0472	0.0976	U	PCI/G
I A-D	09/28/19	Uranium-233/234	1.06	0.13	0.0443		PCI/G
I A-D	09/28/19	Uranium-235/236	0.137	0.0498	0.0385		PCI/G
I A-D	09/28/19	Uranium-238	0.957	0.123	0.0384	••	PCI/G
1 A-D	09/30/19	Neptunium-236	-0.0000679	0.00898	0.0189	<u> </u>	PCI/G
1 A-D	09/30/19	Plutonium-236	-0.0000679	0.00898	0.0189	<u> </u>	PCI/G
1 A-D	09/30/19	Plutonium-239/240	-0.0000654	0.00866	0.0182	<u> </u>	PCI/G
1 A-D	09/30/19	Plutonium-242	0.00188	0.00724	0.0134	U	PCI/G
1 A-D	09/30/19	Plutonium-244	0.00489	0.0077	0.0115	U	PCI/G
1 A-D	10/01/19	Neptunium-237	0.00431	0.0135	0.0256	U	PCI/G
1 A-D	10/04/19	Plutonium-241	1.03	1.65	2.79	U	PCI/G
1 A-D	09/26/19	Iron-55	0.604	2.47	3.69	U	PCI/G
1 A-D	09/26/19	Nickel-63	0.0243	0.433	0.742	U	PCI/G
1 A-D	09/24/19	Technetium-99	-0.199	0.453	0.773	U	PCI/G
1 A-D	09/26/19	Tritium	-0.0587	2.15	3.82	U	PCI/G
1 A-D	09/27/19	Carbon-14	0.388	1.72	2.96	U	PCI/G
1 A-D	10/03/19	Strontium-90	-0.00175	0.00834	0.0149	U	PCI/G
1 A-D	10/03/19	Yttrium-90	-0.00175	0.00834	0.0149	U	PCI/G
1 A-D	10/02/19	Nickel-59	-0.000143	0.269	0.658	U	PCI/G
1 A-D	10/07/19	Americium-241	0.00948	0.0124	0.0194	U	PCI/G
1 A-D	10/07/19	Americium-243	0.00545	0.0128	0.0224	U	PCI/G
1 A-D	10/07/19	Curium-243/244	0.00157	0.00921	0.0173	U	PCI/G
1 A-D	10/07/19	Curium-245/246	0	0.00585	0.00633	U	PCI/G
1 B	10/02/19	Polonium-210	0.499	0.169	0.143		PCI/G
1 B	10/03/19	Thorium-228	1.66	0.345	0.292		PCI/G
1 B	10/03/19	Thorium-229	-0.0568	0.124	0.262	U	PCI/G
1 B	10/03/19	Thorium-230	1.71	0.318	0.174		PCI/G
1 B	10/03/19	Thorium-232	1.6	0.304	0.156		PCI/G
1 B	10/01/19	Uranium-232	-0.0293	0.0452	0.0893	U	PCI/G
1 B	10/01/19	Uranium-233/234	1.08	0.118	0.0557		PCI/G
1 B	10/01/19	Uranium-235/236	0.041	0.0321	0.0454	U	PCI/G
1 B	10/01/19	Uranium-238	1.17	0.121	0.0387		PCI/G
1 B	10/01/19	Neptunium-236	0.000831	0.00673	0.0136	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Table B-1. Complete Results from the GEL Laboratory									
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units		
1 B	10/01/19	Plutonium-236	0.000831	0.00673	0.0136	U	PCI/G		
1 B	10/01/19	Plutonium-239/240	-0.0017	0.00707	0.0165	U	PCI/G		
1 B	10/01/19	Plutonium-242	-0.00351	0.0162	0.0341	U	PCI/G		
1 B	10/01/19	Plutonium-244	0.00163	0.00627	0.0116	U	PCI/G		
1 B	10/05/19	Neptunium-237	-0.00243	0.00788	0.0182	U	PCI/G		
1 B	10/06/19	Plutonium-241	0.32	1.66	2.84	U	PCI/G		
1 B	09/25/19	Actinium-225	-0.99	1.59	2.55	U	PCI/G		
1 B	09/25/19	Actinium-227	0.0504	0.0567	0.0926	U	PCI/G		
1 B	09/25/19	Actinium-228	1.61	0.0755	0.0411	0	PCI/G		
1 B	09/25/19	Antimony-125	0.00373	0.0175	0.0307	U	PCI/G		
1 B	09/25/19	Barium-137m	0.0143	0.00808	0.0107	0	PCI/G		
1 B	09/25/19	Bismuth-212	1 73	0.00000	0.0107		PCI/G		
1 B	09/25/19	Bismuth-213	0	0.0331	0.031	UI	PCI/G		
1 B	09/25/19	Bismuth-214	1 12	0.0367	0.0208	01	PCI/G		
1 B	09/25/19	Cesium-134	0	0.0158	0.0181	UI I	PCI/G		
1 B	09/25/19	Cesium-137	0.0151	0.00150	0.0101	01	PCI/G		
1 B	09/25/19	Cobalt-60	0.00571	0.00699	0.0113	IJ	PCI/G		
1 B	09/25/19	Europium-152	0.00304	0.000	0.0321	<u> </u>	PCI/G		
1 B	09/25/19	Europium-154	0.00504	0.019	0.0321	<u> </u>	PCI/G		
1 B 1 B	09/25/19	Europium 155	0.0071	0.0226	0.0373		PCI/G		
1 B 1 B	09/25/19	Holmium 166m	0.00101	0.0480	0.0401	U	PCI/G		
1 D	09/25/19	L and 210	-0.00101	2.11	2.62	<u> </u>	DCI/G		
1 D	09/25/19	Lead-210	1.17	0.0208	0.0212	0	PCI/G		
1 D	09/25/19	Lead 214	1.37	0.0298	0.0212				
1 D 1 D	09/25/19	Nontunium 220	1.5	0.0397	0.0722	I II	PCI/G		
1 D	09/25/19	Nichium 04	0.00718	0.100	0.12				
	09/25/19	Detersion 40	0.00/18	0.00623	0.0103	0	PCI/G		
	09/25/19	Potassium-40	23	0.409	0.0833	TT	PCI/G		
	09/25/19	Prometnium-14/	-//.0	205	0 159	U	PCI/G		
	09/25/19	Protactinium-231	0	0.181	0.138	UI	PCI/G		
I B	09/25/19	Radium-226	1.12	0.0367	0.0208		PCI/G		
	09/25/19	Radium-228	1.01	0.0755	0.0411	TT	PCI/G		
	09/25/19	Sodium-22	0.00268	0.00821	0.0141	<u> </u>	PCI/G		
	09/25/19	Tellurium-125m	0 4(1	5.95	0.05	UI	PCI/G		
I B	09/25/19	Thailium-208	0.461	0.0194	0.011	* *	PCI/G		
I B	09/25/19	Thorium-231	-0.16	0.138	0.212	U	PCI/G		
I B	09/25/19	Thorium-234	1.36	0.918	0.799	* *	PCI/G		
I B	09/25/19	Thulium-1/1	-2.04	8.79	15	<u> </u>	PCI/G		
I B	09/25/19	11n-126	0	0.0348	0.0345		PCI/G		
I B	09/28/19	Iodine-129	-0.221	0.369	0.567	<u> </u>	PCI/G		
I B	09/26/19	Iron-55	-0.218	2.87	4.4	<u> </u>	PCI/G		
I B	09/26/19	Nickel-63	-0.0/43	0.348	0.599	<u> </u>	PCI/G		
I B	09/25/19	Technetium-99	-0.133	0.3	0.514	<u> </u>	PCI/G		
I B	09/27/19	I ritium	0.347	2.31	4.11	<u> </u>	PCI/G		
I B	09/28/19	Carbon-14	-0.59	1.43	2.56	<u> </u>	PCI/G		
I B	09/25/19	Strontium-90	0.00957	0.00798	0.0133	<u> </u>	PCI/G		
I B	09/25/19	Yttrium-90	0.00957	0.00798	0.0133	<u> </u>	PCI/G		
I B	10/01/19	Nickel-59	-0.00198	0.809	1.43	<u> </u>	PCI/G		
I B	10/05/19	Americium-241	0.0112	0.0146	0.0215	<u> </u>	PCI/G		
I B	10/05/19	Americium-243	0.00399	0.0207	0.0381	<u> </u>	PCI/G		
I B	10/05/19	Curium-243/244	0.00222	0.00754	0.00667	<u> </u>	PCI/G		
1 B	10/05/19	Curium-245/246	3.86E-10	0.00908	0.0177	<u> </u>	PCI/G		
1 B-D	09/26/19	Iron-55	0.697	2.73	4.17	U	PCI/G		
1 B-D	09/26/19	Nickel-63	0.0474	0.448	0.767	U	PCI/G		
1 B-D	09/26/19	Actinium-225	0.519	1.6	2.63	U	PCI/G		
1 B-D	09/26/19	Actinium-227	0.0151	0.0685	0.0897	U	PCI/G		
1 B-D	09/26/19	Actinium-228	1.71	0.0708	0.0361		PCI/G		
1 B-D	09/26/19	Antimony-125	-0.00393	0.0154	0.0267	U	PCI/G		
1 B-D	09/26/19	Barium-137m	0.0593	0.0106	0.00949		PCI/G		
1 B-D	09/26/19	Bismuth-212	1.75	0.179	0.134		PCI/G		
1 B-D	09/26/19	Bismuth-213	0.00685	0.0173	0.0304	U	PCI/G		

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
1 B-D	09/26/19	Bismuth-214	1.09	0.0334	0.0188		PCI/G
1 B-D	09/26/19	Cesium-134	0	0.0128	0.0159	UI	PCI/G
1 B-D	09/26/19	Cesium-137	0.0626	0.0112	0.01		PCI/G
1 B-D	09/26/19	Cobalt-60	-0.000558	0.00622	0.0108	U	PCI/G
1 B-D	09/26/19	Europium-152	0.000229	0.017	0.0301	U	PCI/G
1 B-D	09/26/19	Europium-154	-0.0128	0.0225	0.0355	Ū	PCI/G
1 B-D	09/26/19	Europium-155	0	0.0399	0.044	UI UI	PCI/G
1 B-D	09/26/19	Holmium-166m	-0.00599	0.00971	0.0161	U	PCI/G
1 B-D	09/26/19	Lead-210	1	1 66	2.89	<u> </u>	PCI/G
	09/26/19	Lead 212	1 71	0.03	0.0193	0	PCI/G
1 B-D	09/26/19	Lead-212	1.71	0.03	0.0175		PCI/G
	09/26/19	Nontunium 220	0.0146	0.0414	0.0218	II	PCI/G
	09/20/19	Nishing 04	0.0140	0.0701	0.11	U	PCI/G
	09/20/19	Nioblum-94	0.00829	0.00813	0.00988	0	PCI/G
1 D-D	09/20/19	Potassium-40	24	0.380	0.064	TT	PCI/G
I B-D	09/26/19	Promethium-14/	37.5	185	313	<u> </u>	PCI/G
I B-D	09/26/19	Protactinium-231	0	0.196	0.148	UI	PCI/G
I B-D	09/26/19	Radium-226	1.09	0.0334	0.0188		PCI/G
I B-D	09/26/19	Radium-228	1.71	0.0708	0.0361		PCI/G
I B-D	09/26/19	Sodium-22	-0.0043	0.00809	0.0128	U	PCI/G
1 B-D	09/26/19	Tellurium-125m	4.46	3.94	6.28	U	PCI/G
1 B-D	09/26/19	Thallium-208	0.487	0.018	0.0097		PCI/G
1 B-D	09/26/19	Thorium-231	0.061	0.123	0.199	U	PCI/G
1 B-D	09/26/19	Thorium-234	0.969	0.722	0.671		PCI/G
1 B-D	09/26/19	Thulium-171	-1.35	6.9	12	U	PCI/G
1 B-D	09/26/19	Tin-126	0	0.0314	0.0304	UI	PCI/G
1 B-D	09/28/19	Iodine-129	0.14	0.394	0.727	U	PCI/G
1 B-D	10/01/19	Polonium-210	0.658	0.21	0.181		PCI/G
1 B-D	09/30/19	Thorium-228	1.46	0.198	0.105		PCI/G
1 B-D	09/30/19	Thorium-229	0.0494	0.0484	0.0683	U	PCI/G
1 B-D	09/30/19	Thorium-230	0.918	0.149	0.0471		PCI/G
1 B-D	09/30/19	Thorium-232	1.54	0.192	0.047		PCI/G
1 B-D	09/28/19	Uranium-232	-0.0583	0.0515	0.108	U	PCI/G
1 B-D	09/28/19	Uranium-233/234	0.847	0.125	0.0675		PCI/G
1 B-D	09/28/19	Uranium-235/236	0.0708	0.049	0.0677		PCI/G
1 B-D	09/28/19	Uranium-238	0.864	0.126	0.0713		PCI/G
1 B-D	09/30/19	Neptunium-236	-0.00101	0.00913	0.0201	U	PCI/G
1 B-D	09/30/19	Plutonium-236	-0.00101	0.00913	0.0201	U	PCI/G
1 B-D	09/30/19	Plutonium-239/240	0.00101	0.00919	0.0201	<u> </u>	PCI/G
1 B-D	09/30/19	Plutonium-242	-0.00572	0.0105	0.0205	<u> </u>	PCI/G
1 B D	09/30/19	Plutonium 244	0.000972	0.00568	0.0220	U	PCI/G
1 B D	10/01/19	Nentunium 237	0.000903	0.00308	0.0107	<u> </u>	PCI/G
	10/01/19	Diptonium 241	-0.00108	2.02	2.46	<u> </u>	PCI/G
	10/04/19	Fiutomum-241	0.0720	2.03	2.40	<u> </u>	
	09/20/19	Niekol 62	-0.0/39	2.44	0.762		PCI/G
	09/20/19	Technotium 00	-0.11/	0.442	0.703	U 11	PCI/C
	09/24/19	Twitium	0.0910	0.4	0.0/8	U 11	PCI/G
	09/20/19	Carlan 14	-1.53	2.21	4.11	U	PCI/G
1 B-D	09/2//19	Carbon-14	-0.907	1.62	2.89	U	PCI/G
I B-D	09/28/19	Strontium-90	0.00683	0.00544	0.00899	U	PCI/G
I B-D	09/28/19	Y ttrium-90	0.00683	0.00544	0.00899	<u>U</u>	PCI/G
I B-D	10/02/19	Nickel-59	-0.732	0.802	1.25	U	PCI/G
I B-D	10/07/19	Americium-241	0.00597	0.0185	0.033	U	PCI/G
1 B-D	10/07/19	Americium-243	-0.00524	0.0157	0.0322	U	PCI/G
1 B-D	10/07/19	Curium-243/244	0.00296	0.013	0.0227	U	PCI/G
1 B-D	10/07/19	Curium-245/246	-0.00405	0.00795	0.0194	U	PCI/G
1 C	10/02/19	Polonium-210	0.813	0.209	0.139		PCI/G
1 C	10/02/19	Thorium-228	1.56	0.238	0.155		PCI/G
1 C	10/02/19	Thorium-229	0.0398	0.0749	0.129	U	PCI/G
1 C	10/02/19	Thorium-230	1.36	0.211	0.106		PCI/G
1 C	10/02/19	Thorium-232	1.4	0.209	0.0606		PCI/G
1 C	10/01/19	Uranium-232	-0.0295	0.0424	0.0852	U	PCI/G
1 C	10/01/19	Uranium-233/234	1.13	0.114	0.0323		PCI/G
1 C	10/01/19	Uranium-235/236	0.0556	0.0298	0.0324		PCI/G

Table B-1. Complete Results from the GEL Laboratory

Table B-1. Complete Results from the GEL Laboratory										
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units			
1 C	10/01/19	Uranium-238	1.31	0.122	0.028		PCI/G			
1 C	10/01/19	Neptunium-236	-0.000953	0.0063	0.0147	U	PCI/G			
1 C	10/01/19	Plutonium-236	-0.000953	0.0063	0.0147	U	PCI/G			
1 C	10/01/19	Plutonium-239/240	-0.00366	0.00912	0.0215	U	PCI/G			
1 C	10/01/19	Plutonium-242	-0.01	0.013	0.0311	U	PCI/G			
10	10/01/19	Plutonium-244	0.000847	0.00822	0.0168	U	PCI/G			
10	10/06/19	Neptunium-237	-0.00636	0.0065	0.0154	U	PCI/G			
10	10/06/19	Plutonium-241	0.296	1.55	2 66	<u> </u>	PCI/G			
10	09/25/19	Actinium-225	-0.0363	1.33	2.60	U	PCI/G			
10	09/25/19	Actinium-223	-0.0369	0.0602	0.0947	<u> </u>	PCI/G			
10	09/25/19	Actinium 228	-0.0309	0.0002	0.0747	0	PCI/G			
10	09/25/19	Antimony 125	0.00680	0.0709	0.0421	I I	PCI/G			
10	09/25/19	Barium 137m	0.0003	0.0178	0.051	0	PCI/G			
10	09/25/19	Bismuth 212	1.05	0.012	0.0108		PCI/G			
10	09/25/19	Distilutil-212	0.00701	0.200	0.130	I.I.				
10	09/25/19	Bismuth 214	-0.00/91	0.0217	0.033	0	PCI/G			
10	09/25/19	Bislinuti-214	1.2	0.0410	0.0208	TT	PCI/G			
10	09/25/19	Cesium-134	0 0.0120	0.0179	0.0185	UI	PCI/G			
10	09/25/19	Cesium-137	0.0129	0.0127	0.0115	* *	PCI/G			
10	09/25/19	Cobalt-60	0.0000183	0.00667	0.0115	<u> </u>	PCI/G			
1 C	09/25/19	Europium-152	0.0212	0.0252	0.0326	<u> </u>	PCI/G			
1 C	09/25/19	Europium-154	0.0316	0.0261	0.0416	<u> </u>	PCI/G			
1 C	09/25/19	Europium-155	0	0.044	0.0485	UI	PCI/G			
1 C	09/25/19	Holmium-166m	-0.00749	0.0114	0.0186	U	PCI/G			
1 C	09/25/19	Lead-210	0.296	1.58	2.71	U	PCI/G			
1 C	09/25/19	Lead-212	1.76	0.0314	0.0208		PCI/G			
1 C	09/25/19	Lead-214	1.34	0.0408	0.0717		PCI/G			
1 C	09/25/19	Neptunium-239	0.046	0.0716	0.12	U	PCI/G			
1 C	09/25/19	Niobium-94	0.00447	0.00651	0.0111	U	PCI/G			
1 C	09/25/19	Potassium-40	22.9	0.398	0.0833		PCI/G			
1 C	09/25/19	Promethium-147	-32.8	207	343	U	PCI/G			
1 C	09/25/19	Protactinium-231	0	0.184	0.162	UI	PCI/G			
1 C	09/25/19	Radium-226	1.2	0.0416	0.0208		PCI/G			
1 C	09/25/19	Radium-228	1.8	0.0709	0.0421		PCI/G			
1 C	09/25/19	Sodium-22	0.0113	0.00937	0.015	U	PCI/G			
1 C	09/25/19	Tellurium-125m	4.1	5.97	6.7	U	PCI/G			
1 C	09/25/19	Thallium-208	0.55	0.0206	0.011		PCI/G			
1 C	09/25/19	Thorium-231	-0.0154	0.141	0.221	U	PCI/G			
1 C	09/25/19	Thorium-234	1.22	0.696	0.742		PCI/G			
1 C	09/25/19	Thulium-171	-1.94	7.27	12.5	U	PCI/G			
1 C	09/25/19	Tin-126	0	0.0343	0.0338	UI	PCI/G			
1 C	09/28/19	Iodine-129	0.552	0.543	1.07	U	PCI/G			
10	09/26/19	Iron-55	-0.663	2.5	3.81	U	PCI/G			
1 C	09/26/19	Nickel-63	0.0443	0.415	0.71	Ū	PCI/G			
10	09/25/19	Technetium-99	-0.0897	0.322	0.55	<u> </u>	PCI/G			
10	09/27/19	Tritium	-0.0805	2.08	3.76	<u> </u>	PCI/G			
10	09/28/19	Carbon-14	-0 594	1.4	2 51	<u> </u>	PCI/G			
10	09/28/19	Strontium-90	-0.01	0.00793	0.0148	<u> </u>	PCI/G			
10	09/28/19	Vttrium-90	-0.01	0.00793	0.0148	<u> </u>	PCI/G			
10	10/02/10	Nickel 50	0.808	0.00773	1.41	U	PCI/G			
10	10/02/19	Amoriajum 241	-0.898	0.911	0.0199	<u> </u>	DCI/G			
10	10/07/19		0.0170	0.0149	0.0100	U	PCI/G			
10	10/07/19		0.00448	0.0180	0.0343	U 11				
10	10/07/19	Curium-243/244	0.0097	0.0114	0.0148	U	PCI/G			
10	10/0 //19	Curium-245/246	8.68E-10	0.0125	0.0249	U	PCI/G			
I C-D	09/26/19	Actinium-225	-0.745	1.47	2.36	<u> </u>	PCI/G			
I C-D	09/26/19	Actinium-22/	0.043	0.057	0.0793	U	PCI/G			
I C-D	09/26/19	Actinium-228	1.63	0.0708	0.0397	**	PCI/G			
1 C-D	09/26/19	Antimony-125	0.0141	0.0158	0.0281	U	PCI/G			
1 C-D	09/26/19	Barium-137m	0.0385	0.0109	0.0112		PCI/G			
1 C-D	09/26/19	Bismuth-212	1.6	0.185	0.149		PCI/G			
1 C-D	09/26/19	Bismuth-213	0.00175	0.02	0.0312	U	PCI/G			
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units			
------------	---------------	-------------------	-----------	-------------	------------------	------------------------	-------			
1 C-D	09/26/19	Bismuth-214	1.11	0.0363	0.0199		PCI/G			
1 C-D	09/26/19	Cesium-134	0	0.0158	0.0182	UI	PCI/G			
1 C-D	09/26/19	Cesium-137	0.0407	0.0115	0.0118		PCI/G			
1 C-D	09/26/19	Cobalt-60	0.0037	0.00674	0.012	U	PCI/G			
1 C-D	09/26/19	Europium-152	-0.0223	0.0165	0.0282	U	PCI/G			
1 C-D	09/26/19	Europium-154	-0.00121	0.0224	0.036	U	PCI/G			
1 C-D	09/26/19	Europium-155	0	0.0365	0.0357	UI	PCI/G			
1 C-D	09/26/19	Holmium-166m	0.00593	0.0123	0.0188	U	PCI/G			
1 C-D	09/26/19	Lead-210	1.02	0.243	0.221		PCI/G			
1 C-D	09/26/19	Lead-212	1.61	0.0277	0.0173		PCI/G			
1 C-D	09/26/19	Lead-214	1.26	0.0366	0.0658		PCI/G			
1 C-D	09/26/19	Neptunium-239	-0.0211	0.0598	0.0922	U	PCI/G			
1 C-D	09/26/19	Niobium-94	0.0103	0.00684	0.0109	U	PCI/G			
1 C -D	09/26/19	Potassium-40	22.2	0 383	0.0826	0	PCI/G			
1 C-D	09/26/19	Promethium-147	75.2	161	272	II	PCI/G			
1 C-D	09/26/19	Protectinium-231	13.2	0.137	0.14	<u> </u>	PCI/G			
1 C D	09/26/19	Padium 226	1 11	0.0363	0.14	01	PCI/G			
1 C D	09/26/19	Radium 228	1.11	0.0303	0.0199		PCI/G			
1 C D	09/26/19	Sodium 22	0.000704	0.0708	0.0397	II	DCI/G			
1 C-D	09/26/19	Tellurium 125m	-0.000/04	2 52	5.12	U II	PCI/G			
1 C D	00/26/10	Thallium 200	0.529	0.0104	0.0101	U	PCL/C			
	09/20/19	Thorium 221	0.0252	0.0194	0.0101	ΙT	PCI/G			
1 C-D	09/26/19	Thorium-231	-0.0253	0.121	0.191	U	PCI/G			
I C-D	09/26/19	Thorium-234	1	0.327	0.273	1.11	PCI/G			
I C-D	09/26/19	Thulium-1/1	0	1.79	2.13	UI	PCI/G			
I C-D	09/26/19	1in-126	0	0.0251	0.0219		PCI/G			
I C-D	09/28/19	Iodine-129	0.284	0.421	0.815	U	PCI/G			
1 C-D	10/01/19	Polonium-210	0.495	0.184	0.171		PCI/G			
1 C-D	09/30/19	Thorium-228	1.22	0.181	0.12		PCI/G			
1 C-D	09/30/19	Thorium-229	0.159	0.0739	0.0848		PCI/G			
1 C-D	09/30/19	Thorium-230	0.869	0.145	0.0723		PCI/G			
1 C-D	09/30/19	Thorium-232	0.884	0.146	0.0721		PCI/G			
1 C-D	09/28/19	Uranium-232	-0.0165	0.0548	0.106	U	PCI/G			
1 C-D	09/28/19	Uranium-233/234	0.823	0.107	0.0387		PCI/G			
1 C-D	09/28/19	Uranium-235/236	0.0666	0.0344	0.0336		PCI/G			
1 C-D	09/28/19	Uranium-238	0.954	0.114	0.0335		PCI/G			
1 C-D	09/30/19	Neptunium-236	-0.00875	0.0106	0.0261	U	PCI/G			
1 C-D	09/30/19	Plutonium-236	-0.00875	0.0106	0.0261	U	PCI/G			
1 C-D	09/30/19	Plutonium-239/240	-0.00594	0.0106	0.0246	U	PCI/G			
1 C-D	09/30/19	Plutonium-242	0.00263	0.00894	0.0168	U	PCI/G			
1 C-D	09/30/19	Plutonium-244	0.00827	0.00905	0.0117	U	PCI/G			
1 C-D	10/01/19	Neptunium-237	-0.000538	0.0125	0.0282	U	PCI/G			
1 C-D	10/04/19	Plutonium-241	0.992	1.68	2.84	U	PCI/G			
1 C-D	09/26/19	Iron-55	-1.39	2.34	3.57	U	PCI/G			
1 C-D	09/26/19	Nickel-63	0.0293	0.461	0.789	U	PCI/G			
1 C-D	09/24/19	Technetium-99	0.31	0.448	0.754	U	PCI/G			
1 C-D	09/26/19	Tritium	-1.32	2.14	3.96	U	PCI/G			
1 C-D	09/27/19	Carbon-14	1.61	1.75	2.94	U	PCI/G			
1 C-D	10/03/19	Strontium-90	-0.00508	0.00808	0.0149	U	PCI/G			
1 C-D	10/03/19	Yttrium-90	-0.00508	0.00808	0.0149	U	PCI/G			
1 C-D	10/02/19	Nickel-59	0.881	0.993	1.91	U	PCI/G			
1 C-D	10/05/19	Americium-241	0.011	0.0197	0.0338	U	PCI/G			
1 C-D	10/05/19	Americium-243	-0.007	0.0145	0.031	U	PCI/G			
1 C-D	10/05/19	Curium-243/244	-0.00728	0.0113	0.0262	U	PCI/G			
1 C-D	10/05/19	Curium-245/246	0.00203	0.0069	0.00609	U	PCI/G			
10 A	09/30/19	Polonium-210	1.79	0.337	0.127	-	PCI/G			
10 A	09/29/19	Thorium-228	0.37	0.111	0.0995		PCI/G			
10 A	09/29/19	Thorium-229	0.0452	0.0522	0.0794	U	PCI/G			
10 A	09/29/19	Thorium-230	1 51	0 197	0.0712	0	PCI/G			
10 4	09/29/19	Thorium-232	0 302	0.127	0.0401		PCI/G			
10 A	09/20/10	Uranium 232	0.302	0.0622	0.0491	II	PCI/G			
10 A	09/30/19	Uranium 222/224	-0.0410	0.0032	0.141	U	PCI/G			
10 A	00/20/10	Uronium 225/224	0.0524	0.175	0.0048	I T	DCI/C			
10 A	09/30/19	Oranium-233/230	0.0534	0.0436	0.0397	U	rU/U			

Table B-1. Complete Results from the GEL Laboratory

Table B-1. Complete Results from the GEL Laboratory								
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units	
10 A	09/30/19	Uranium-238	1.43	0.165	0.0535		PCI/G	
10 A	09/28/19	Neptunium-236	-0.00353	0.0109	0.0237	U	PCI/G	
10 A	09/28/19	Plutonium-236	-0.00353	0.0109	0.0237	U	PCI/G	
10 A	09/28/19	Plutonium-239/240	0.0017	0.0111	0.021	U	PCI/G	
10 A	09/28/19	Plutonium-242	-0.00488	0.00789	0.0173	Ū	PCI/G	
10 A	09/28/19	Plutonium-244	0.00851	0.01	0.013	U	PCI/G	
10 A	09/30/19	Neptunium-237	0.0043	0.00901	0.0158	U	PCI/G	
10 A	10/03/19	Plutonium-241	0.534	3.68	6.32	U	PCI/G	
10 A	09/14/19	Actinium-225	-0.152	0.352	0.617	U	PCI/G	
10 A	09/14/19	Actinium-227	0.0424	0.0349	0.0455	U	PCI/G	
10 A	09/14/19	Actinium-228	0.409	0.0355	0.0234		PCI/G	
10 A	09/14/19	Antimony-125	0.0124	0.0133	0.0156	U	PCI/G	
10 A	09/14/19	Barium-137m	0.133	0.00655	0.00566		PCI/G	
10 A	09/14/19	Bismuth-212	0.472	0.102	0.0791		PCI/G	
10 A	09/14/19	Bismuth-213	0.0058	0.0115	0.0177	IJ	PCI/G	
10 A	09/14/19	Bismuth-214	1.23	0.0219	0.0107	0	PCI/G	
10 A	09/14/19	Cesium-134	0	0.00718	0.00675	Ш	PCI/G	
10 A	09/14/19	Cesium-137	0.14	0.00692	0.00598	01	PCI/G	
10 A	09/14/19	Cobalt-60	-0.00408	0.00475	0.00671	IJ	PCI/G	
10 4	09/14/19	Furopium-152	-0.000471	0.00949	0.0163	<u> </u>	PCI/G	
10 A	09/14/19	Europium-152	0.00223	0.00949	0.0103	<u> </u>	PCI/G	
10 A	09/14/19	Europium-155	0.00223	0.0150	0.0224		PCI/G	
10 A	09/14/19	Holmium-166m	0.000105	0.0100	0.010	U	PCI/G	
10 A	09/14/19	Lead-210	1 43	0.00303	0.01	0	PCI/G	
10 A	09/14/19	Lead-210	0 388	0.103	0.13		PCI/G	
10 A	00/14/10	Lead 214	1.36	0.0238	0.0461		PCI/G	
10 A	09/14/19	Nentunium-239	-0.0302	0.0258	0.0401	II	PCI/G	
10 A	09/14/19	Niohium 04	0.00585	0.0505	0.0490	<u> </u>	PCI/G	
10 A	09/14/19	Potassium 40	12.4	0.00044	0.00003	0	PCI/G	
10 A	00/14/10	Promethium 147	8 10	87.8	144	ΤŢ	PCI/G	
10 A	09/14/19	Protectinium 231	-0.19	0.0714	0.0803		PCI/G	
10 A	09/14/19	Padium 226	1 22	0.0714	0.0803	01	DCI/G	
10 A	09/14/19	Radium 228	0.409	0.0219	0.0107		PCI/G	
10 A	09/14/19	Sodium 22	0.409	0.0555	0.0234	T I	DCI/G	
10 A	09/14/19	Tollurium 125m	1.40	1.50	2.44	<u> </u>	DCI/G	
10 A	09/14/19	Thallium 208	0.118	0.00868	0.00618	0	PCI/G	
10 A	09/14/19	Thorium 221	0.118	0.0687	0.00018	T I	DCI/G	
10 A	09/14/19	Thorium 234	0.0283	0.0087	0.108	0	PCI/G	
10 A	09/14/19	Thulium 171	1.47	1.14	1.24	I II	DCI/G	
10 A	09/14/19	Tin 126	0	0.0118	0.0115		PCI/G	
10 A	09/14/19	Int-120	0.468	0.337	0.0113	U	PCI/G	
10 A	09/30/19	Iodine 129	0.468	0.337	0.83	<u> </u>	PCI/G	
10 A	09/30/19	Iodine 129	88.1	1.90	0.03	0	0/2	
10 A	09/30/19	Iodine 129	88.1	1.99	0.902		0/2	
10 A	09/28/10	Strontium 90	0.00330	0.0082	0.0147	ΤŢ	PCI/G	
10 A	09/28/19	Vttrium 90	0.00339	0.0082	0.0147	<u> </u>	PCI/G	
10 A	09/28/19	Iron 55	0.00539	2.70	4.11	<u> </u>	DCI/G	
10 A	09/28/19	Tritium	-0.0371	2.79	3.66	<u> </u>	PCI/G	
10 A	09/28/19	Tritium	95 7	4.26	2.96	0	0/.	
10 A	09/26/19	Carbon 14	1.57	1.48	2.47	ΤŢ	PCI/G	
10 A	09/26/19	Carbon 14	1.57	3.12	2.47	0	0/2	
	09/20/19	Nickel 50	0.042	0.004	2.40	ŢŢ	PCI/C	
10 A 10 A	10/03/10	Americium 241	-0.043	0.904	0.0271	U 11	PCI/G	
10 A 10 A	10/03/19	Americium 242	-0.00737	0.0154	0.03/1		PCI/C	
10 A 10 A	10/03/19	Curium 2/2/2//	-0.0228	0.0108	0.049	U 11	PCI/G	
10 A 10 A	10/03/19	Curium 245/244	-0.0119	0.0120	0.0333		PCI/C	
10 A 10 A	10/03/19	Polonium 210	1.20	0.0119	0.0121	U	PCI/G	
10 A	10/02/19	Thorium 229	1.38	0.302	0.220		PCI/G	
10 A	09/28/19	Thorium-228	0.416	0.117	0.0962	Τĭ	PCI/G	
10 A	09/28/19	The minume 229	0.0333	0.0506	0.0821	U	PCI/G	
10 A	09/28/19	1 norium-230	1.64	0.208	0.0736		ILU/G	

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
10 A	09/28/19	Thorium-232	0.378	0.102	0.0508		PCI/G
10 A	09/29/19	Uranium-232	-0.0278	0.0545	0.118	U	PCI/G
10 A	09/29/19	Uranium-233/234	1.54	0.153	0.0515		PCI/G
10 A	09/29/19	Uranium-235/236	0.15	0.0506	0.0369		PCI/G
10 A	09/29/19	Uranium-238	1.43	0.147	0.0425		PCI/G
10 A	09/28/19	Neptunium-236	0.00186	0.00365	0.00279	U	PCI/G
10 A	09/28/19	Plutonium-236	0.00186	0.00365	0.00279	U	PCI/G
10 A	09/28/19	Plutonium-239/240	0.00808	0.00767	0.011	U	PCI/G
10 A	09/28/19	Plutonium-242	0.00768	0.0128	0.0217	U	PCI/G
10 A	09/28/19	Plutonium-244	0.00808	0.00682	0.0086	U	PCI/G
10 A	09/30/19	Neptunium-237	0.000397	0.00755	0.0162	U	PCI/G
10 A	10/02/19	Plutonium-241	1.04	1.81	3.06	U	PCI/G
10 A	09/13/19	Actinium-225	-0.31	0 369	0.588	U	PCI/G
10 A	09/13/19	Actinium-227	0.0192	0.033	0.0464	U	PCI/G
10 A	09/13/19	Actinium-228	0.0192	0.0306	0.0205	0	PCI/G
10 A	09/13/19	Antimony_125	0.0392	0.0957	0.0203	II	PCI/G
10 A	00/13/10	Barium 137m	0.0030	0.00537	0.00191	0	PCI/G
10 A	09/13/19	Bismuth 212	0.124	0.00019	0.00484		PCI/G
10 A	09/13/19	Dismuth 212	0.000282	0.0304	0.0092	II	PCI/G
10 A	09/13/19	Dismuth 214	-0.0000283	0.0103	0.00056	0	PCI/G
10 A	09/13/19	Cosium 124	1.00	0.0194	0.00930	III	PCI/G
10 A	09/13/19	Cesium 127	0 121	0.00348	0.00531	UI	PCI/G
10 A	09/13/19		0.151	0.00034	0.00511	TT	PCI/G
10 A	09/13/19	Cobalt-00	0.00111	0.00327	0.00581	<u> </u>	PCI/G
10 A	09/13/19	Europium-152	-0.00447	0.00998	0.0136	U	PCI/G
10 A	09/13/19	Europium-154	-0.00613	0.0123	0.0185	<u> </u>	PCI/G
10 A	09/13/19	Europium-155	0 00145	0.0202	0.0227		PCI/G
10 A	09/13/19	Holmium-100m	-0.00145	0.00544	0.00814	U	PCI/G
10 A	09/13/19	Lead-210	0.272	0.0114	0.0102		PCI/G
10 A	09/13/19	Lead-212	0.373	0.0114	0.0102		PCI/G
10 A	09/13/19	Lead-214	1.24	0.0225	0.0119	TT	PCI/G
10 A	09/13/19	Neptunium-239	-0.0291	0.034	0.0558	U	PCI/G
10 A	09/13/19	Niobium-94	0.00343	0.00418	0.00491	U	PCI/G
10 A	09/13/19	Potassium-40	12.5	0.194	0.0436	* *	PCI/G
10 A	09/13/19	Promethium-14/	24.8	96.1	160	U	PCI/G
10 A	09/13/19	Protactinium-231	0	0.0735	0.0763	UI	PCI/G
10 A	09/13/19	Radium-226	1.06	0.0194	0.00956		PCI/G
10 A	09/13/19	Radium-228	0.392	0.0306	0.0205		PCI/G
10 A	09/13/19	Sodium-22	-0.00219	0.00438	0.00661	<u> </u>	PCI/G
10 A	09/13/19	Tellurium-125m	2.08	1.9	2.78	U	PCI/G
10 A	09/13/19	Thallium-208	0.117	0.00627	0.0055		PCI/G
10 A	09/13/19	Thorium-231	-0.00321	0.0674	0.107	U	PCI/G
10 A	09/13/19	Thorium-234	1.68	0.372	0.381		PCI/G
10 A	09/13/19	Thulium-171	-2.34	4.18	7.1	U	PCI/G
10 A	09/13/19	Tin-126	0	0.0148	0.0159	UI	PCI/G
10 A	09/30/19	Iodine-129	0.119	0.425	0.818	U	PCI/G
10 A	09/24/19	Technetium-99	-0.0227	0.41	0.699	U	PCI/G
10 A	09/28/19	Strontium-90	0.0114	0.00907	0.0146	U	PCI/G
10 A	09/28/19	Yttrium-90	0.0114	0.00907	0.0146	U	PCI/G
10 A	09/26/19	Nickel-63	0.148	0.238	0.402	U	PCI/G
10 A	09/27/19	Iron-55	1.58	3.34	4.95	U	PCI/G
10 A	09/27/19	Tritium	0.985	2.1	3.59	U	PCI/G
10 A	09/26/19	Carbon-14	0.183	1.43	2.48	U	PCI/G
10 A	09/26/19	Nickel-59	-0.0776	0.466	0.981	U	PCI/G
10 A	10/03/19	Americium-241	0.009	0.0142	0.0212	U	PCI/G
10 A	10/03/19	Americium-243	-0.0167	0.0199	0.0481	U	PCI/G
10 A	10/03/19	Curium-243/244	0.00148	0.00927	0.0175	U	PCI/G
10 A	10/03/19	Curium-245/246	0	0.0076	0.0104	U	PCI/G
10 B	09/29/19	Nickel-63	-0.0954	0.292	0.505	U	PCI/G
10 B	10/01/19	Polonium-210	1.09	0.302	0.198		PCI/G
10 B	09/28/19	Thorium-228	0.519	0.142	0.119		PCI/G
10 B	09/28/19	Thorium-229	0.118	0.0909	0.133	U	PCI/G
10 B	09/28/19	Thorium-230	1.82	0.244	0.133		PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I able	e B-I. Complete R	esuits from	the GLL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
10 B	09/28/19	Thorium-232	0.444	0.119	0.0597		PCI/G
10 B	09/29/19	Uranium-232	0.0218	0.0337	0.0521	U	PCI/G
10 B	09/29/19	Uranium-233/234	1.44	0.185	0.0931		PCI/G
10 B	09/29/19	Uranium-235/236	0.0693	0.0506	0.0639		PCI/G
10 B	09/29/19	Uranium-238	1.42	0.18	0.0552		PCI/G
10 B	09/28/19	Neptunium-236	-3 7E-10	0.00532	0.0106	U	PCI/G
10 B	09/28/19	Plutonium-236	-3.7E-10	0.00532	0.0106	U	PCI/G
10 B	09/28/19	Plutonium 230/240	0.00535	0.00552	0.0100	<u> </u>	PCI/G
10 D	00/28/10	Plutonium 242	0.00355	0.0050	0.0104	U	PCI/G
10 B	09/28/19	Plutonium 244	0.00209	0.0144	0.0200	U	PCI/G
10 B	09/28/19	Plutomum-244	0.00107	0.00409	0.00818	<u> </u>	PCI/G
10 B	09/30/19	Neptunium-237	-0.000405	0.00982	0.0219	<u> </u>	PCI/G
10 B	10/02/19	Plutonium-241	1.24	1.99	3.37	<u> </u>	PCI/G
10 B	09/13/19	Actinium-225	0.0444	0.385	0.62	U	PCI/G
10 B	09/13/19	Actinium-227	0.04	0.0339	0.0489	U	PCI/G
10 B	09/13/19	Actinium-228	0.426	0.0328	0.0224		PCI/G
10 B	09/13/19	Antimony-125	0.00976	0.00884	0.0155	U	PCI/G
10 B	09/13/19	Barium-137m	0.115	0.00609	0.00517		PCI/G
10 B	09/13/19	Bismuth-212	0.476	0.0849	0.0746		PCI/G
10 B	09/13/19	Bismuth-213	0	0.0109	0.0175	UI	PCI/G
10 B	09/13/19	Bismuth-214	1.13	0.0224	0.0101		PCI/G
10 B	09/13/19	Cesium-134	0	0.00717	0.00746	UI	PCI/G
10 B	09/13/19	Cesium-137	0.122	0.00643	0.00546		PCI/G
10 B	09/13/19	Cobalt-60	-0.000592	0.00359	0.00611	U	PCI/G
10 B	09/13/19	Europium-152	-0.00748	0.00943	0.0162	U	PCI/G
10 B	09/13/19	Europium-152	-0.0044	0.00943	0.0102	<u> </u>	PCI/G
10 B	00/13/10	Europium 155	-0.0044	0.0133	0.0130		PCI/G
10 B	09/13/19	Holmium 166m	0.0000227	0.0209	0.0233		PCI/G
10 D	09/13/19		-0.0000237	0.00337	0.00892	U	PCI/G
10 B	09/13/19	Lead-210	0.554	1.05	1.33	0	PCI/G
10 B	09/13/19	Lead-212	0.423	0.0127	0.0108		PCI/G
10 B	09/13/19	Lead-214	1.32	0.0253	0.0453	* **	PCI/G
10 B	09/13/19	Neptunium-239	0	0.0516	0.0577	UI	PCI/G
10 B	09/13/19	Niobium-94	0	0.00434	0.00527	UI	PCI/G
10 B	09/13/19	Potassium-40	13.5	0.201	0.0446		PCI/G
10 B	09/13/19	Promethium-147	19.5	101	168	U	PCI/G
10 B	09/13/19	Protactinium-231	0	0.0811	0.0816	UI	PCI/G
10 B	09/13/19	Radium-226	1.13	0.0224	0.0101		PCI/G
10 B	09/13/19	Radium-228	0.426	0.0328	0.0224		PCI/G
10 B	09/13/19	Sodium-22	-0.00132	0.00476	0.00704	U	PCI/G
10 B	09/13/19	Tellurium-125m	0.175	1.89	2.92	U	PCI/G
10 B	09/13/19	Thallium-208	0.121	0.00761	0.00559		PCI/G
10 B	09/13/19	Thorium-231	0.105	0.0856	0.11	U	PCI/G
10 B	09/13/19	Thorium-234	1.7	0.434	0.366		PCI/G
10 B	09/13/19	Thulium-171	-0.274	3.61	6.22	U	PCI/G
10 B	09/13/19	Tin-126	0	0.0169	0.0171	UI	PCI/G
10 B	09/30/19	Iodine-129	0 144	0.462	0.885	U	PCI/G
10 B	09/24/19	Technetium-99	-0.175	0.402	0.635	<u> </u>	PCI/G
10 B	09/24/19	Strontium 90	0.00321	0.00802	0.033	U	PCI/G
10 D	09/28/19	Vttrium 00	-0.00321	0.00802	0.0148		PCI/G
10 D	09/28/19	Y UTUM-90	-0.00321	0.00802	0.0148	U	PCI/G
10 B	09/29/19	INICKCI-03	0.0397	0.327	0.559	U	PCI/G
10 B	09/29/19	Iron-55	3.35	2.23	3.24	••	PCI/G
10 B	09/27/19	Iritium	0.619	2.08	3.59	U	PCI/G
10 B	09/26/19	Carbon-14	0.776	1.41	2.4	U	PCI/G
10 B	09/26/19	Nickel-59	0.512	0.764	1.49	U	PCI/G
10 B	10/07/19	Americium-241	0.0107	0.0099	0.0117	U	PCI/G
10 B	10/07/19	Americium-243	-0.00462	0.0192	0.0449	U	PCI/G
10 B	10/07/19	Curium-243/244	0.00151	0.00662	0.0116	U	PCI/G
10 B	10/07/19	Curium-245/246	0.00521	0.0153	0.0156	U	PCI/G
10 C	09/28/19	Polonium-210	1.5	0.324	0.139		PCI/G
10 C	09/28/19	Thorium-228	0.377	0.118	0.123		PCI/G
10 C	09/28/19	Thorium-229	0.0649	0.0597	0.087	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
10 C	09/28/19	Thorium-230	1.42	0.197	0.115		PCI/G
10 C	09/28/19	Thorium-232	0.355	0.0988	0.0619		PCI/G
10 C	09/29/19	Uranium-232	0.0298	0.0338	0.0476	IJ	PCI/G
10 C	09/29/19	Uranium-233/234	1.63	0.0330	0.0658		PCI/G
10 C	09/29/19	Uranium-235/236	0.133	0.0531	0.0030		PCI/G
10 C	00/20/10	Uranium 239	1.74	0.0551	0.0800		PCI/G
10 C	09/29/19	Neutraniana 226	1./4	0.18	0.0809	TT	PCI/G
10 C	09/30/19	Neptunium-236	-0.00533	0.00712	0.0195	<u> </u>	PCI/G
10 C	09/30/19	Plutonium-236	-0.00533	0.00/12	0.0195	U	PCI/G
10 C	09/30/19	Plutonium-239/240	-0.000118	0.0114	0.0232	U	PCI/G
10 C	09/30/19	Plutonium-242	0.0102	0.0117	0.0174	U	PCI/G
10 C	09/30/19	Plutonium-244	0.00928	0.00907	0.00991	U	PCI/G
10 C	09/30/19	Neptunium-237	0.00432	0.0102	0.0185	U	PCI/G
10 C	10/02/19	Plutonium-241	0.379	1.66	2.84	U	PCI/G
10 C	09/13/19	Actinium-225	-0.126	0.376	0.661	U	PCI/G
10 C	09/13/19	Actinium-227	0.04	0.0402	0.0504	U	PCI/G
10 C	09/13/19	Actinium-228	0.495	0.0415	0.0263		PCI/G
10 C	09/13/19	Antimony-125	0.00904	0.0109	0.0189	II	PCI/G
10 C	00/13/10	Barium 137m	0.00904	0.00707	0.0165	0	PCI/G
10 C	09/13/19	Darium-15/m Diamath 212	0.1	0.00707	0.00003		
10 C	09/13/19	Bismuth-212	0.480	0.106	0.0917	TT	PCI/G
10 C	09/13/19	Bismuth-213	0	0.0214	0.0191	UI	PCI/G
10 C	09/13/19	Bismuth-214	1.25	0.0271	0.0126		PCI/G
10 C	09/13/19	Cesium-134	0	0.00925	0.00943	UI	PCI/G
10 C	09/13/19	Cesium-137	0.106	0.00747	0.007		PCI/G
10 C	09/13/19	Cobalt-60	0.00257	0.00455	0.00792	U	PCI/G
10 C	09/13/19	Europium-152	-0.0106	0.0108	0.0183	U	PCI/G
10 C	09/13/19	Europium-154	0.000951	0.015	0.0255	U	PCI/G
10 C	09/13/19	Europium-155	0	0.0192	0.0218	UI	PCI/G
10 C	09/13/19	Holmium-166m	0.00389	0.00635	0.0114	U	PCI/G
10 C	09/13/19	Lead-210	1 25	0.14	0.147	_	PCI/G
10 C	09/13/19	Lead-212	0.465	0.0126	0.0108		PCI/G
10 C	00/13/10	Lead-212	1.20	0.0120	0.0103		PCI/G
10 C	09/13/19	Neutronicou 220	0.0292	0.027	0.0522	TT	
10 C	09/13/19	Neptunium-239	-0.0382	0.0355	0.0573	<u> </u>	PCI/G
10 C	09/13/19	Niobium-94	0.001//	0.003/1	0.00665	U	PCI/G
10 C	09/13/19	Potassium-40	13.2	0.235	0.0578		PCI/G
10 C	09/13/19	Promethium-147	-1.21	101	166	U	PCI/G
10 C	09/13/19	Protactinium-231	0	0.0877	0.0924	UI	PCI/G
10 C	09/13/19	Radium-226	1.25	0.0271	0.0126		PCI/G
10 C	09/13/19	Radium-228	0.495	0.0415	0.0263		PCI/G
10 C	09/13/19	Sodium-22	0.00119	0.00551	0.00909	U	PCI/G
10 C	09/13/19	Tellurium-125m	1.32	2.1	2.8	U	PCI/G
10 C	09/13/19	Thallium-208	0.151	0.0104	0.00638		PCI/G
10 C	09/13/19	Thorium-231	0.068	0.105	0.123	IJ	PCI/G
10 C	09/13/19	Thorium-234	1 76	0.208	0.173	<u> </u>	PCI/G
10 C	09/13/10	Thulium-171	1.70	1 21	1 16	ŢΠ	PCI/G
10 C	00/13/19	Tin 126	0	0.0120	0.0120		PCI/G
10 C	07/13/17	1111-120 La line 120	0 201	0.0138	0.0129		PCI/G
10 C	09/30/19	Todine-129	-0.201	0.575	0.985	<u> </u>	PCI/G
10 C	09/24/19	1 echnetium-99	-0.262	0.366	0.63	U	PCI/G
10 C	09/28/19	Strontium-90	0.0105	0.00899	0.0148	U	PCI/G
10 C	09/28/19	Yttrium-90	0.0105	0.00899	0.0148	U	PCI/G
10 C	09/27/19	Nickel-63	0.103	0.277	0.47	U	PCI/G
10 C	09/29/19	Iron-55	4.17	2	2.84		PCI/G
10 C	09/27/19	Tritium	0.401	2.18	3.78	U	PCI/G
10 C	09/26/19	Carbon-14	0.244	1.4	2.42	U	PCI/G
10 C	09/26/19	Nickel-59	-0.376	1.39	2.4	U	PCI/G
10 C	10/07/19	Americium-241	0.00613	0.012	0.0196	- U	PCI/G
10 C	10/07/19	Americium-243	-0.00682	0.012	0.0453	<u> </u>	PCI/G
10 C	10/07/10	Curium 242/244	-0.00082	0.0202	0.0455	U	DCL/C
10 C	10/07/19	Curium 245/244	0.0142	0.0143	0.0194		PCI/G
100	10/07/19	Curium-243/240	0	0.0084	0.0115	U	PCI/G
11 A	09/30/19	Polonium-210	2.85	0.47	0.172		PCI/G
11 A	10/01/19	Thorium-228	0.979	0.197	0.182		PCI/G
11 A	10/01/19	Thorium-229	0.0668	0.0756	0.12	U	PCI/G
11 A	10/01/19	Thorium-230	2.4	0.267	0.107		PCI/G

Table B-1. Complete Results from the GEL Laboratory

	Table	e B-1. Complete I	Nesults from	THE GEL L	aboi atoi	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
11 A	10/01/19	Thorium-232	0.709	0.156	0.125		PCI/G
11 A	09/30/19	Uranium-232	-0.00387	0.0448	0.0858	U	PCI/G
11 A	09/30/19	Uranium-233/234	2.81	0.196	0.0614		PCI/G
11 A	09/30/19	Uranium-235/236	0.198	0.0575	0.0501		PCI/G
11 A	09/30/19	Uranium-238	2.73	0.192	0.0427		PCI/G
11 A	09/30/19	Neptunium-236	0.0054	0.015	0.0275	U	PCI/G
11 A	09/30/19	Plutonium-236	0.0054	0.015	0.0275	U	PCI/G
11 A	09/30/19	Plutonium-239/240	0.0131	0.017	0.0265	U	PCI/G
11 A	09/30/19	Plutonium-242	0.00752	0.0104	0.0168	U	PCI/G
11 A	09/30/19	Plutonium-244	0.0118	0.0147	0.021	U	PCI/G
11 A	09/30/19	Neptunium-237	0.00425	0.00921	0.0154	U	PCI/G
11 A	10/03/19	Plutonium-241	-0.555	2.43	4.21	U	PCI/G
11 A	09/14/19	Actinium-225	0.0409	0.658	1.06	Ū	PCI/G
11 A	09/14/19	Actinium-227	0	0.0632	0.0744	UI	PCI/G
11 A	09/14/19	Actinium-228	1 37	0.0678	0.0409	01	PCI/G
11 A	09/14/19	Antimony-125	0.00863	0.0070	0.0409	IJ	PCI/G
11 A	09/14/19	Barium-137m	0.0344	0.0190	0.020	0	PCI/G
11 A	09/14/19	Bismuth_212	1 31	0.0087	0.00734		PCI/G
11 A	00/14/19	Bismuth 212	0.021	0.101	0.132	ΤŢ	PCI/G
11 A	09/14/19	Dismuth 214	0.021	0.0201	0.0289	0	
11 A	09/14/19	Bismuth-214	2.70	0.0436	0.0179	TT	PCI/G
11 A	09/14/19	Cesium-134	0 02(2	0.0148	0.0128	UI	PCI/G
11 A	09/14/19	Cesium-137	0.0363	0.00919	0.00986	* *	PCI/G
11 A	09/14/19	Cobalt-60	0.00626	0.00663	0.0117	<u> </u>	PCI/G
11 A	09/14/19	Europium-152	-0.00311	0.0169	0.0277	<u> </u>	PCI/G
11 A	09/14/19	Europium-154	-0.00118	0.0247	0.0372	<u> </u>	PCI/G
11 A	09/14/19	Europium-155	0	0.035	0.0369	UI	PCI/G
11 A	09/14/19	Holmium-166m	-0.00099	0.00935	0.0162	U	PCI/G
11 A	09/14/19	Lead-210	1.86	2.7	4.86	U	PCI/G
11 A	09/14/19	Lead-212	1.38	0.0246	0.018		PCI/G
11 A	09/14/19	Lead-214	3.32	0.046	0.0757		PCI/G
11 A	09/14/19	Neptunium-239	0.078	0.0785	0.0913	U	PCI/G
11 A	09/14/19	Niobium-94	0	0.00741	0.00946	UI	PCI/G
11 A	09/14/19	Potassium-40	22.6	0.363	0.107		PCI/G
11 A	09/14/19	Promethium-147	222	155	265	U	PCI/G
11 A	09/14/19	Protactinium-231	0	0.126	0.136	UI	PCI/G
11 A	09/14/19	Radium-226	2.76	0.0456	0.0179		PCI/G
11 A	09/14/19	Radium-228	1.37	0.0678	0.0409		PCI/G
11 A	09/14/19	Sodium-22	-0.000238	0.00884	0.0133	U	PCI/G
11 A	09/14/19	Tellurium-125m	1.76	4.41	4.59	U	PCI/G
11 A	09/14/19	Thallium-208	0.443	0.0183	0.0095		PCI/G
11 A	09/14/19	Thorium-231	0	0.159	0.181	UI	PCI/G
11 A	09/14/19	Thorium-234	3.99	0.997	0.765		PCI/G
11 A	09/14/19	Thulium-171	12.5	14.3	17.4	U	PCI/G
11 A	09/14/19	Tin-126	0	0.0302	0.0287	UI	PCI/G
11 A	09/30/19	Iodine-129	-0.0326	0.606	1.08	U	PCI/G
11 A	09/25/19	Technetium-99	-0.368	0.466	0.802	U	PCI/G
11 A	09/25/19	Strontium-90	-0.00633	0.00682	0.0124	U	PCI/G
11 A	09/25/19	Yttrium-90	-0.00633	0.00682	0.0124	Ū	PCI/G
11 A	09/28/19	Nickel-63	0.0289	0.279	0.477	U	PCI/G
11 A	09/30/19	Iron-55	0.711	2.42	3.64	Ū	PCI/G
11 A	09/28/19	Tritium	0.344	2.04	3.54	Ū	PCI/G
11 A	09/26/19	Carbon-14	0.786	1 45	2 47	U	PCI/G
11 A	09/27/19	Nickel-59	0.741	0.872	1 72	U	PCI/G
11 A	10/03/19	Americium-241	_0.0118	0.072	0.0536	U	PCI/G
11 A	10/03/19	Americium-243	0.0118	0.0215	0.0254	U	PCI/G
11 4	10/03/19	Curium-243/244	_0 00025	0.0149	0.0204	U	PCI/G
11 Δ	10/03/19	Curium-245/244	0.000273	0.0208	0.0393	U	PCI/G
11 R	00/20/10	Polonium 210	0.00383	0.00924	0.0147	U	PCI/C
11 D 11 D	10/01/19	Thorium 229	2.33	0.382	0.143		
11 D 11 D	10/01/19	Thorium 220	0.749	0.16	0.120	ŢΤ	PCI/G
пв	10/01/19	1 norium-229	0.042	0.0548	0.0861	U	TU/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
11 B	10/01/19	Thorium-230	2.67	0.273	0.107		PCI/G
11 B	10/01/19	Thorium-232	0.744	0.145	0.0666		PCI/G
11 B	09/30/19	Uranium-232	0.0212	0.0361	0.0609	U	PCI/G
11 B	09/30/19	Uranium-233/234	3.13	0.187	0.0319	_	PCI/G
11 B	09/30/19	Uranium-235/236	0.185	0.0481	0.032		PCI/G
11 B	09/30/19	Uranium-238	3.01	0.183	0.0276		PCI/G
11 D	09/30/19	Nontunium 226	0.00861	0.185	0.0270	T T	PCI/G
11 D	09/30/19	Distantiana 226	-0.00801	0.0115	0.0315	U	PCI/G
	09/30/19	Plutonium-236	-0.00861	0.0115	0.0315	<u> </u>	PCI/G
11 B	09/30/19	Plutonium-239/240	-0.00281	0.0117	0.0274	0	PCI/G
11 B	09/30/19	Plutonium-242	0.0126	0.0106	0.0134	U	PCI/G
11 B	09/30/19	Plutonium-244	0.00132	0.0107	0.0218	U	PCI/G
11 B	09/30/19	Neptunium-237	0.0106	0.015	0.0248	U	PCI/G
11 B	10/03/19	Plutonium-241	0.67	2.44	4.17	U	PCI/G
11 B	09/14/19	Actinium-225	-0.715	0.83	1.28	U	PCI/G
11 B	09/14/19	Actinium-227	0	0.0718	0.0965	UI	PCI/G
11 B	09/14/19	Actinium-228	1.51	0.0696	0.04		PCI/G
11 B	09/14/19	Antimony-125	0.00597	0.0185	0.0312	U	PCI/G
11 B	09/14/19	Barium-137m	0.00357	0.00865	0.0312	0	PCI/G
11 B	09/14/19	Bismuth_212	1 40	0.00005	0.149		PCI/G
11 B	00/14/19	Bismuth 212	0.0204	0.10	0.140	I I	PCI/G
	09/14/19	Dismuil-215	0.0294	0.0297	0.0327	U	PCI/O
	09/14/19	BISMUTN-214	3.16	0.0496	0.0193	* **	PCI/G
11 B	09/14/19	Cesium-134	0	0.014	0.0158	UI	PCI/G
11 B	09/14/19	Cesium-137	0.0172	0.00914	0.011		PCI/G
11 B	09/14/19	Cobalt-60	0.00354	0.00714	0.0121	U	PCI/G
11 B	09/14/19	Europium-152	-0.00971	0.0195	0.0329	U	PCI/G
11 B	09/14/19	Europium-154	0	0.0435	0.0376	UI	PCI/G
11 B	09/14/19	Europium-155	0	0.0412	0.0481	UI	PCI/G
11 B	09/14/19	Holmium-166m	0.000985	0.0104	0.0182	U	PCI/G
11 B	09/14/19	Lead-210	0	4.31	5.15	UI	PCI/G
11 B	09/14/19	Lead-212	1 49	0.0276	0.0207		PCI/G
11 B	09/14/19	Lead-214	3 73	0.0514	0.0207		PCI/G
11 B	00/14/10	Nentunium 230	0.0573	0.0735	0.0243	II	PCI/G
11 D	09/14/19	Nichium 04	-0.0373	0.0733	0.116	<u> </u>	PCI/G
11 D	09/14/19	Determine 40	0.00823	0.00917	0.0100	0	PCI/G
11 B	09/14/19	Potassium-40	23.0	0.340	0.0973	TT	PCI/G
11 B	09/14/19	Promethium-14/	42.3	216	328	0	PCI/G
11 B	09/14/19	Protactinium-231	0	0.134	0.16	UI	PCI/G
11 B	09/14/19	Radium-226	3.16	0.0496	0.0193		PCI/G
11 B	09/14/19	Radium-228	1.51	0.0696	0.04		PCI/G
11 B	09/14/19	Sodium-22	0	0.0156	0.0133	UI	PCI/G
11 B	09/14/19	Tellurium-125m	5.22	4.52	6.04	U	PCI/G
11 B	09/14/19	Thallium-208	0.431	0.0181	0.0114		PCI/G
11 B	09/14/19	Thorium-231	0.0767	0.144	0.222	U	PCI/G
11 B	09/14/19	Thorium-234	4.43	1.11	0.965		PCI/G
11 B	09/14/19	Thulium-171	5 91	12.6	20.1	U	PCI/G
11 B	09/14/19	Tin-126	0	0.0424	0.0372	<u> </u>	PCI/G
11 B	09/30/19	Indine-129	0.0672	0.010	0.69	I	PCI/G
11 P	00/25/10	Technetium 00	0.0072	0.313	0.00	U	PCI/G
	10/05/19	Strontium 00	-0.224	0.392	0.0140		
11 B	10/05/19	Surontium-90	-0.00213	0.00814	0.0149	U	PCI/G
11 B	10/05/19	Y ttrium-90	-0.00213	0.00814	0.0149	U	PCI/G
11 B	09/28/19	Nickel-63	-0.223	0.265	0.461	U	PCI/G
11 B	09/30/19	Iron-55	1.51	2.57	3.87	U	PCI/G
11 B	09/28/19	Tritium	1.37	2.16	3.66	U	PCI/G
11 B	09/26/19	Carbon-14	0.877	1.43	2.43	U	PCI/G
11 B	09/27/19	Nickel-59	-0.0835	0.442	0.948	U	PCI/G
11 B	10/03/19	Americium-241	0.00989	0.0176	0.029	U	PCI/G
11 B	10/03/19	Americium-243	0.0183	0.0259	0.0402	U	PCI/G
11 B	10/03/19	Curium-243/244	0.00645	0.0197	0.0366	U	PCI/G
11 B	10/03/19	Curium-245/246	0.00264	0.0166	0.0313	Ū	PCI/G
11 C	09/30/19	Polonium_210	1 97	0.246	0.150		PCI/G
11 C	00/20/19	Linonium 222	0.0260	0.040	0.107	ΤT	DCL/C
11 C	09/30/19		0.0209	0.0009	0.10/	U	PCI/G
110	09/30/19	Uranium-233/234	3.28	0.251	0.0608		PCI/G
11 C	09/30/19	Uranium-235/236	0.278	0.0801	0.0664		PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I adi	e B-I. Complete R	esults from	the GEL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
11 C	09/30/19	Uranium-238	3.41	0.256	0.0547		PCI/G
11 C	09/30/19	Neptunium-236	-0.00305	0.00736	0.0188	U	PCI/G
11 C	09/30/19	Plutonium-236	-0.00305	0.00736	0.0188	U	PCI/G
11 C	09/30/19	Plutonium-239/240	0.00575	0.0102	0.0168	U	PCI/G
11 C	09/30/19	Plutonium-242	-0.0098	0.00898	0.0217	U	PCI/G
11 C	09/30/19	Plutonium-244	0.0125	0.011	0.0113	Х	PCI/G
11 C	09/30/19	Neptunium-237	0.00513	0.00934	0.0152	U	PCI/G
11 C	10/03/19	Plutonium-241	-1.15	1.95	3.42	U	PCI/G
11 C	09/14/19	Actinium-225	0.283	0.695	1.22	U	PCI/G
11 C	09/14/19	Actinium-227	0	0.0744	0.0893	UI	PCI/G
11 C	09/14/19	Actinium-228	1.5	0.0619	0.0367		PCI/G
11 C	09/14/19	Antimony-125	0.0015	0.0166	0.0279	U	PCI/G
11 C	09/14/19	Barium-137m	0.018	0.00731	0.00951		PCI/G
11 C	09/14/19	Bismuth-212	1.52	0.153	0.135		PCI/G
11 C	09/14/19	Bismuth-213	-0.00162	0.0182	0.0305	U	PCI/G
11 C	09/14/19	Bismuth-214	2 71	0.041	0.0303	0	PCI/G
11 C	09/14/19	Cesium-134	0	0.0138	0.0146	Ш	PCI/G
11 C	09/14/19	Cesium-137	0.019	0.0133	0.0140	01	PCI/G
11 C	09/14/19	Cobalt 60	0.015	0.00772	0.0101	II	PCI/G
11 C	09/14/19	Europium 152	0.00319	0.00039	0.0113	<u> </u>	PCI/C
11 C	09/14/19	Europium-152	-0.0212	0.0177	0.0297	<u> </u>	PCI/G
11 C	09/14/19	Europium-154	0.009	0.0239	0.0334		PCI/G
11 C	09/14/19	Europium-155	0 0002(0	0.0368	0.0415		PCI/G
11 C	09/14/19	Holmium-166m	0.000269	0.00956	0.0167	U	PCI/G
	09/14/19	Lead-210	1.68	2.12	3.64	0	PCI/G
	09/14/19	Lead-212	1.54	0.0249	0.0191		PCI/G
	09/14/19	Lead-214	3.26	0.0479	0.0851	••	PCI/G
11 C	09/14/19	Neptunium-239	-0.0545	0.07	0.104	<u> </u>	PCI/G
11 C	09/14/19	Niobium-94	0	0.0098	0.0102	UI	PCI/G
11 C	09/14/19	Potassium-40	23.3	0.328	0.0892		PCI/G
11 C	09/14/19	Promethium-147	85	183	300	U	PCI/G
11 C	09/14/19	Protactinium-231	0	0.15	0.149	UI	PCI/G
11 C	09/14/19	Radium-226	2.71	0.041	0.0187		PCI/G
11 C	09/14/19	Radium-228	1.5	0.0619	0.0367		PCI/G
11 C	09/14/19	Sodium-22	0.00651	0.00842	0.0127	U	PCI/G
11 C	09/14/19	Tellurium-125m	4.7	4.62	5.18	U	PCI/G
11 C	09/14/19	Thallium-208	0.461	0.0173	0.0098		PCI/G
11 C	09/14/19	Thorium-231	0.15	0.135	0.196	U	PCI/G
11 C	09/14/19	Thorium-234	3.67	0.862	0.736		PCI/G
11 C	09/14/19	Thulium-171	0	10.4	14.6	UI	PCI/G
11 C	09/14/19	Tin-126	0	0.0308	0.0313	UI	PCI/G
11 C	09/30/19	Iodine-129	-0.0153	0.228	0.474	U	PCI/G
11 C	09/25/19	Technetium-99	-0.371	0.374	0.646	U	PCI/G
11 C	09/25/19	Strontium-90	0.00403	0.00604	0.0102	U	PCI/G
11 C	09/25/19	Yttrium-90	0.00403	0.00604	0.0102	U	PCI/G
11 C	09/28/19	Nickel-63	0.0344	0.255	0.435	U	PCI/G
11 C	09/30/19	Iron-55	1.73	2.42	3.59	U	PCI/G
11 C	09/28/19	Tritium	0.724	2.12	3.64	U	PCI/G
11 C	09/26/19	Carbon-14	0.437	1.41	2.43	Ū	PCI/G
11 C	09/27/19	Nickel-59	-0.129	0.917	1.63	Ū	PCI/G
11 C	10/03/19	Americium-241	0.00839	0.0178	0.0315	U	PCI/G
11 C	10/03/19	Americium-243	-0.0034	0.0177	0.0391	U	PCI/G
11 C	10/03/19	Curium-243/244	0.0034	0.0177	0.0371	U	PCI/G
11 C	10/03/19	Curium-245/244	0.00417	0.0125	0.0224	U	PCI/G
11 C	10/05/19	Thorium 229	1 1 4	0.0103	0.05	U	PCI/G
11 C	10/05/19	Thorium 220	0.0626	0.551	0.303	IT	PCI/G
11 C	10/05/19	Thorium 220	-0.0020	0.15	0.31	U	PCI/C
11 C	10/05/19	Thorium 222	3.1/	0.453	0.239		PCI/G
12 4	10/03/19	A stinium 232	0./94	0.23	0.149	ŤŤ	PCI/G
13 A	09/23/19	Actinium-225	-1.56	1.95	3.05	U	PCI/G
13 A	09/25/19	Actinium-227	0.105	0.0849	0.127	U	PCI/G
13 A	09/25/19	Actinium-228	1.21	0.115	0.0713		PCI/G

Table B-1. Complete Results from the GEL Laboratory

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13 A	09/25/19	Antimony-125	0.00672	0.027	0.0465	U	PCI/G
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Barium-137m	0.0971	0.0145	0.0162		PCI/G
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Bismuth-212	1.54	0.231	0.238		PCI/G
1A 0925/19 Dismuth-1/4 2.46 0.0057 0.0126 U PC/G 13 A 0925/19 Cesium-134 0 0.0133 0.0171 PC/G 13 A 0925/19 Cobalt-60 0.00491 0.0126 0.0197 U PC/G 13 A 0925/19 Europium-154 -0.00849 0.0229 0.0464 U PC/G 13 A 0925/19 Europium-154 -0.00849 0.0357 0.0604 U PC/G 13 A 0925/19 Holmium-166m 0.00333 0.0167 0.0299 U PC/G 13 A 0925/19 Lead-212 1.24 0.0347 0.0288 PC/G 13 A 0925/19 Neptunim-239 -0.073 0.0819 0.133 U PC/G 13 A 0925/19 Neptunim-231 0 0.22 0.221 U U PC/G 13 A 0925/19 Redium-228 1.21 0.115 0.0713 PC/G 13 <td< td=""><td>13 A</td><td>09/25/19</td><td>Bismuth-213</td><td>-0.0085</td><td>0.0292</td><td>0.0494</td><td>U</td><td>PCI/G</td></td<>	13 A	09/25/19	Bismuth-213	-0.0085	0.0292	0.0494	U	PCI/G
13.A 092519 Cesium-13 12.10 0.0004 0.0264 UL PClG 13.A 092519 Cesium-137 0.103 0.0153 0.0171 PClG 13.A 092519 Europium-152 -0.000493 0.0269 0.0465 U PClG 13.A 092519 Europium-155 0 0.0499 0.0511 UL PClG 13.A 092519 Lead-210 2.65 0.416 0.347 PClG 13.A 092519 Lead-212 1.24 0.0447 0.0288 PClG 13.A 092519 Lead-214 2.68 0.0446 0.0331 U PClG 13.A 092519 Nead-214 2.68 0.0448 0.0132 0.0188 U PClG 13.A 092519 Neadum-26 2.46 0.0657 0.0326 PClG 13.A 092519 Radium-228 1.21 0.115 0.0713 U PClG 13.A 092519	13 A	09/25/19	Bismuth-214	2 46	0.0657	0.0326		PCI/G
DA 0925/19 Cestum-137 0.103 0.017 D. Cl G 13 A 0925/19 Cobal-60 0.00491 0.0112 0.0197 U PCl G 13 A 0925/19 Europium-152 -0.000493 0.0250 0.0464 U PCl G 13 A 0925/19 Europium-154 -0.00049 0.0357 0.0029 U PCl G 13 A 0925/19 Lead-210 2.65 0.0446 0.0299 U PCl G 13 A 0925/19 Lead-212 1.24 0.0341 PCl G 13 A 0925/19 Lead-214 2.68 0.0464 0.0331 U PCl G 13 A 0925/19 Netad-14 39 236 390 U PCl G 13 A 0925/19 Potastium-231 0 0.22 0.021 U1 PCl G 13 A 0925/19 Radium-228 1.21 0.0132 0.0132 U1 PCl G 13 A 0925/19 Radiu	13 A	09/25/19	Cesium-134	2.40	0.0007	0.0320	I II	PCI/G
DA 09/25/19 Cobale-60 0.01091 0.0112 0.0117 U PC1G 13 A 09/25/19 Europium-152 -0.000493 0.0269 0.0465 U PC1G 13 A 09/25/19 Europium-153 0 0.0499 0.0511 UI PC1G 13 A 09/25/19 Leuropium-155 0 0.0499 0.0511 UI PC1G 13 A 09/25/19 Lead-212 1.24 0.0447 0.0288 PC1G 13 A 09/25/19 Lead-214 2.68 0.0646 0.0313 U PC1G 13 A 09/25/19 Neptunium-2379 -0.073 0.0419 0.133 U PC1G 13 A 09/25/19 Neptunium-231 0 0.22 0.026 PC1G 13 A 09/25/19 Redum-26 2.46 0.0657 0.0226 PC1G 13 A 09/25/19 Redum-28 1.21 0.115 0.0133 0.0216 U PC1G	13 A	09/25/19	Cesium 137	0 103	0.0154	0.0204	01	PCI/G
13 A 09/22/19 Condition 0.00493 0.0112 0.00491 0.0112 0.00491 0.0112 0.00491 0.0112 0.00491 0.0112 0.00491 0.0112 0.00491 0.0112 0.00491 0.0112 0.0123 0.00291 0.02519 Lead-212 1.24 0.0312 0.0131 0.02519 P.CUG 13 A 09/2519 Netasium-40 2.25 0.666 0.158 P.CUG 13 A 09/2519 Protectinium-1231 0 0.22 0.0121 0.0112 0.0152 0.0133 0.0216 U P.CUG 13 A 09/2519 Radium-228 1.21 0.0153 0.0126 U P.CUG 13 A 09/2519 Radium-228 1.21 0.0162 <t< td=""><td>13 A</td><td>09/25/19</td><td>Cabalt 60</td><td>0.103</td><td>0.0133</td><td>0.01/1</td><td>TT</td><td></td></t<>	13 A	09/25/19	Cabalt 60	0.103	0.0133	0.01/1	TT	
13 A 09/25/19 Europium-15/2 -40/00484 0.0269 0.0469 U PCIG 13 A 09/25/19 Europium-155 0 0.0499 0.0511 UI PCIG 13 A 09/25/19 Lend-210 2.65 0.416 0.347 PCIG 13 A 09/25/19 Lead-212 1.24 0.0447 0.0288 PCIG 13 A 09/25/19 Lead-212 1.24 0.0447 0.0288 PCIG 13 A 09/25/19 Niobium-34 0.00974 0.0132 0.0138 U PCIG 13 A 09/25/19 Pomethium-147 39 2.36 390 U PCIG 13 A 09/25/19 Potactinium-231 0 0.22 0.0133 0.0216 U PCIG 13 A 09/25/19 Radium-226 2.46 0.0657 0.0326 PCIG 13 A 09/25/19 Radium-228 0.21 0.0162 PCIG 13 A 09/25/19 Thalilum-12	13 A	09/25/19	Cobalt-00	0.00491	0.0112	0.0197	<u> </u>	PCI/G
13 A 09/25/19 Europium-155 0 0.0499 0.0511 UI PCl/G 13 A 09/25/19 Holmism-166m 0.00333 0.0167 0.0299 U PCl/G 13 A 09/25/19 Lead-210 2.65 0.0461 0.0347 PCl/G 13 A 09/25/19 Lead-212 1.24 0.0347 0.0288 PCl/G 13 A 09/25/19 Nepusium-239 -0.073 0.0819 0.133 U PCl/G 13 A 09/25/19 Nepusium-239 -0.073 0.0819 0.138 U PCl/G 13 A 09/25/19 Prometinium-147 39 2.36 390 U PCl/G 13 A 09/25/19 Radium-226 2.46 0.0657 0.0326 PCl/G 13 A 09/25/19 Radium-228 1.21 0.0133 0.0216 U PCl/G 13 A 09/25/19 Thalium-231 -0.06452 0.0133 0.0216 DCl/G 13 A <	13 A	09/25/19	Europium-152	-0.000493	0.0269	0.0465	0	PCI/G
13 A 09/25/19 Europum-155 0 0.0499 0.0511 011 PC/FG 13 A 09/25/19 Lead-210 2.65 0.416 0.347 PC/FG 13 A 09/25/19 Lead-212 1.24 0.0347 0.0288 PC/FG 13 A 09/25/19 Lead-212 1.24 0.0347 0.0288 PC/FG 13 A 09/25/19 Lead-214 2.68 0.0464 0.0131 U PC/FG 13 A 09/25/19 Potassium-40 2.29 0.568 0.158 U PC/FG 13 A 09/25/19 Potassium-40 2.20 0.568 0.158 U PC/FG 13 A 09/25/19 Promethium-147 39 2.26 0.022 0.221 U PC/FG 13 A 09/25/19 Radium-226 2.46 0.0133 0.021 U PC/FG 13 A 09/25/19 Thelirium-125m 6.92 6.22 7.02 U PC/FG <td< td=""><td>13 A</td><td>09/25/19</td><td>Europium-154</td><td>-0.00984</td><td>0.0357</td><td>0.0604</td><td>U</td><td>PCI/G</td></td<>	13 A	09/25/19	Europium-154	-0.00984	0.0357	0.0604	U	PCI/G
13 A 09/25/19 Helmium-166m 0.0033 0.0167 0.0299 U PCl/G 13 A 09/25/19 Lead-212 1.24 0.0347 0.0288 PCl/G 13 A 09/25/19 Lead-214 2.65 0.0466 0.0341 PCl/G 13 A 09/25/19 Neptunium-239 -0.073 0.0819 0.133 U PCl/G 13 A 09/25/19 Neptunium-40 2.29 0.058 0.158 U PCl/G 13 A 09/25/19 Protactinium-213 0 0.22 0.21 U PCl/G 13 A 09/25/19 Radium-226 2.46 0.0657 0.0326 PCl/G 13 A 09/25/19 Radium-226 -0.00435 0.0133 0.0216 U PCl/G 13 A 09/25/19 Tablium-127 6.92 6.22 7.02 U PCl/G 13 A 09/25/19 Thallium-127 0.0324 0.0162 PCl/G 13 A 09/25/19 <	13 A	09/25/19	Europium-155	0	0.0499	0.0511	UI	PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Holmium-166m	0.00333	0.0167	0.0299	U	PCI/G
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Lead-210	2.65	0.416	0.347		PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Lead-212	1.24	0.0347	0.0288		PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Lead-214	2.68	0.0646	0.0341		PCI/G
13 A 09/25/19 Niobum-94 0.00974 0.0132 0.0158 U PCl/G 13 A 09/25/19 Protassium-40 22.9 0.568 0.138 PCl/G 13 A 09/25/19 Protactinium-231 0 0.22 0.221 UI PCl/G 13 A 09/25/19 Radium-226 2.46 0.0657 0.0326 PCl/G 13 A 09/25/19 Radium-228 1.21 0.115 0.0713 PCl/G 13 A 09/25/19 Thellurium-125m 6.92 6.22 7.02 U PCl/G 13 A 09/25/19 Thorium-231 -0.052 0.196 0.033 U PCl/G 13 A 09/25/19 Thorium-234 1.14 0.431 0.41 PCl/G 13 A 1003/19 Polonium-210 1.52 0.348 0.193 PCl/G 13 A 1002/19 Thorium-230 2.42 0.282 0.125 PCl/G 13 A 1002/19 Thorium-232	13 A	09/25/19	Neptunium-239	-0.073	0.0819	0.133	U	PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Niobium-94	0.00974	0.0132	0.0158	U	PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Potassium-40	22.9	0.568	0.158		PCI/G
13 A 09/25/19 Protactinium-231 0 0.22 0.221 UI PCI/G 13 A 09/25/19 Radium-226 2.46 0.0657 0.0326 PCI/G 13 A 09/25/19 Sodium-22 -0.00435 0.0133 0.0216 U PCI/G 13 A 09/25/19 Tellurium-125m 6.92 6.22 7.02 U PCI/G 13 A 09/25/19 Thalium-208 0.391 0.024 0.0162 PCI/G 13 A 09/25/19 Thorium-234 1.14 0.431 0.41 PCI/G 13 A 09/25/19 Thuium-171 0 3 3.41 U1 PCI/G 13 A 1003/19 Plonium-210 1.52 0.348 0.193 PCI/G 13 A 1002/19 Thorium-228 0.936 0.184 0.106 PCI/G 13 A 1002/19 Thorium-228 0.936 0.184 0.106 PCI/G 13 A 10002/19 Thorium-228	13 A	09/25/19	Promethium-147	39	236	390	U	PCI/G
13 A 09/25/19 Radium-226 2.4 0.657 0.0326 PCI/G 13 A 09/25/19 Radium-228 1.21 0.115 0.0713 PCI/G 13 A 09/25/19 Sodium-22 0.00435 0.0133 0.0216 U PCI/G 13 A 09/25/19 Thallum-208 0.391 0.024 0.0162 PCI/G 13 A 09/25/19 Thorium-231 -0.0562 0.196 0.303 U PCI/G 13 A 09/25/19 Thorium-234 1.14 0.431 0.41 PCI/G 13 A 09/25/19 Thin-126 0 0.0323 0.0311 UI PCI/G 13 A 1003/19 Ploinium-210 1.52 0.348 0.193 PCI/G 13 A 1002/19 Thorium-229 0.0571 0.077 0.782 U PCI/G 13 A 1002/19 Thorium-230 2.42 0.282 0.125 PCI/G 13 A 1002/19 Thorium-230 <t< td=""><td>13 A</td><td>09/25/19</td><td>Protactinium-231</td><td>0</td><td>0.22</td><td>0 221</td><td>UI UI</td><td>PCI/G</td></t<>	13 A	09/25/19	Protactinium-231	0	0.22	0 221	UI UI	PCI/G
13 A 09/25/19 Radium-228 1.21 0.0131 0.020 PCI/G 13 A 09/25/19 Sodium-22 -0.00435 0.0133 0.0216 U PCI/G 13 A 09/25/19 Thallium-208 0.391 0.024 0.0162 PCI/G 13 A 09/25/19 Thorium-231 -0.0562 0.196 0.303 U PCI/G 13 A 09/25/19 Thorium-234 1.14 0.431 0.41 PCI/G 13 A 09/25/19 Thorium-214 1.0 0.33 3.41 UI PCI/G 13 A 09/25/19 Thorium-224 0.152 0.348 0.193 PCI/G 13 A 10/03/19 Polonium-210 1.52 0.348 0.193 PCI/G 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PCI/G 13 A 10/02/19 Thorium-229 0.0571 0.0782 U PCI/G 13 A 10/02/19 Thorium-228 0.936	13 A	09/25/10	Radium-226	2 16	0.22	0.0326	01	PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Padium 220	2.40	0.0037	0.0320		PCI/G
13 A 09/25/19 Tellurium-125m 6.92 6.22 7.02 U PC/G 13 A 09/25/19 Thallium-208 0.391 0.024 0.0162 PC/G 13 A 09/25/19 Thorium-231 -0.0562 0.196 0.303 U PC/G 13 A 09/25/19 Thulium-171 0 3 3.41 U1 PC/G 13 A 09/25/19 Thulium-171 0 0.33 0.311 U1 PC/G 13 A 10/03/19 Polonium-210 1.52 0.348 0.193 PC/G 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PC/G 13 A 10/02/19 Thorium-229 0.0571 0.0778 U PC/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PC/G 13 A 10/02/19 Thorium-232 0.804 0.163 0.0778 PC/G 13 A 10/02/19 Thorium-232 0.804	13 A	09/23/19	Radium-228	1.21	0.113	0.0713	TT	PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Sodium-22	-0.00435	0.0133	0.0216	U	PCI/G
13 A 09/25/19 Thallium-208 0.391 0.024 0.0162 PCI/G 13 A 09/25/19 Thorium-231 -0.0562 0.196 0.303 U PCI/G 13 A 09/25/19 Thulium-171 0 0 3 3.41 UI PCI/G 13 A 09/25/19 Tin-126 0 0.0323 0.0311 UI PCI/G 13 A 10/03/19 Polonium-210 1.52 0.348 0.193 PCI/G 13 A 10/02/19 Thorium-229 0.0571 0.0577 0.0782 U PCI/G 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PCI/G 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PCI/G 13 A 10/02/19 Thorium-229 0.0571 0.0572 0.078 PCI/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCI/G 13 A 10/02/19 Thori	13 A	09/25/19	Tellurium-125m	6.92	6.22	7.02	U	PCI/G
13 A 09/25/19 Thorium-231 -0.0562 0.196 0.303 U PCL'G 13 A 09/25/19 Thorium-234 1.14 0.431 0.41 PCL'G 13 A 09/25/19 Tm-126 0 0.0323 0.0311 UI PCL'G 13 A 10/03/19 Polonium-210 1.52 0.348 0.193 PCL'G 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PCL'G 13 A 10/02/19 Thorium-229 0.0571 0.0577 0.078 U PCL'G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCL'G 13 A 10/02/19 Thorium-229 0.0571 0.078 U PCL'G 13 A 10/02/19 Thorium-229 0.0571 0.0782 U PCL'G 13 A 10/02/19 Thorium-232 0.804 0.163 0.0778 UC'G 13 A 10/02/19 Thorium-232 0.026	13 A	09/25/19	Thallium-208	0.391	0.024	0.0162		PCI/G
13 A 09/25/19 Thorium-234 1.14 0.41 PCI/G 13 A 09/25/19 Thulium-171 0 3 3.41 UI PCI/G 13 A 09/25/19 Tin-126 0 0.0323 0.0311 UI PCI/G 13 A 10/03/19 Polonium-210 1.52 0.348 0.193 PCI/G 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PCI/G 13 A 10/02/19 Thorium-229 0.0571 0.0778 PCI/G 13 A 10/02/19 Thorium-229 0.0571 0.0778 PCI/G 13 A 10/02/19 Thorium-229 0.0571 0.0778 PCI/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCI/G 13 A 10/02/19 Thorium-232 0.026 0.0318 0.0778 PCI/G 13 A 10/02/19 Thorium-232 0.026 0.0318 0.0778 PCI/G 13 A	13 A	09/25/19	Thorium-231	-0.0562	0.196	0.303	U	PCI/G
13 A 09/25/19 Thulium-171 0 3 3.41 UI PCLG 13 A 09/25/19 Tin-126 0 0.0323 0.0311 UI PCLG 13 A 10/03/19 Polonium-210 1.52 0.348 0.193 PCLG 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PCLG 13 A 10/02/19 Thorium-229 0.0571 0.0577 0.0782 U PCLG 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCLG 13 A 10/02/19 Thorium-229 0.0571 0.0577 0.0782 U PCLG 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCLG 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCLG 13 A 10/02/19 Thorium-230 2.042 0.282 0.125 PCLG 13 A 10/02/19 Thorium-232 0.026	13 A	09/25/19	Thorium-234	1.14	0.431	0.41		PCI/G
13 A 09/25/19 Tin-126 0 0.0323 0.0311 UI PCl/G 13 A 10/03/19 Polonium-210 1.52 0.348 0.193 PCl/G 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PCl/G 13 A 10/02/19 Thorium-229 0.0571 0.0772 0.0782 U PCl/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCl/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCL/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCL/G 13 A 10/02/19 Thorium-232 0.804 0.163 0.0778 PCL/G 13 A 10/02/19 Thorium-232 0.804 0.163 0.0778 PCL/G 13 A 10/01/19 Uranium-235/234 1.01 0.121 0.0449 PCL/G 13 A 10/01/19 Uranium-235/236 0.0585 <td< td=""><td>13 A</td><td>09/25/19</td><td>Thulium-171</td><td>0</td><td>3</td><td>3.41</td><td>UI</td><td>PCI/G</td></td<>	13 A	09/25/19	Thulium-171	0	3	3.41	UI	PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	09/25/19	Tin-126	0	0.0323	0.0311	UI	PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	10/03/19	Polonium-210	1.52	0.348	0.193		PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	10/03/19	Polonium-210	1.52	0.348	0.193		PCI/G
13 A 10/02/19 Thorium-229 0.0571 0.0577 0.0782 U PCI/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCI/G 13 A 10/02/19 Thorium-232 0.804 0.163 0.0778 PCI/G 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PCI/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCI/G 13 A 10/02/19 Thorium-232 0.804 0.163 0.0778 PCI/G 13 A 10/01/19 Uranium-232 -0.026 0.0318 0.0736 U PCI/G 13 A 10/01/19 Uranium-232/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-232 -0.026 0.0318 0.0736 U PCI/G 13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-236	13 A	10/02/19	Thorium-228	0.936	0.184	0.106		PCI/G
13 A 10/02/19 Thorium-230 2.4.2 0.031 0.042 D D PCI/G 13 A 10/02/19 Thorium-232 0.804 0.163 0.0778 PCI/G 13 A 10/02/19 Thorium-228 0.936 0.184 0.106 PCI/G 13 A 10/02/19 Thorium-229 0.0571 0.0577 0.0782 U PCI/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCI/G 13 A 10/01/19 Uranium-233/234 1.01 0.121 0.0449 PCI/G 13 A 10/01/19 Uranium-233/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-232/236 0.0685 0.0321 0.0449 PCI/G 13 A 10/01/19 Uranium-232/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-23/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uraniu	13 A	10/02/19	Thorium-229	0.0571	0.0577	0.0782	IJ	PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	10/02/19	Thorium-230	2 42	0.282	0.125		PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	10/02/19	Thorium 232	0.804	0.262	0.123		PCI/G
13 A 100/21/9 1101/101/228 0.530 0.184 0.100 PCL/G 13 A 10/02/19 Thorium-230 2.42 0.0277 0.0782 U PCL/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCL/G 13 A 10/01/19 Uranium-232 0.026 0.0318 0.0776 U PCL/G 13 A 10/01/19 Uranium-233/234 1.01 0.121 0.0449 PCL/G 13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCL/G 13 A 10/01/19 Uranium-238 0.981 0.119 0.0349 PCL/G 13 A 10/01/19 Uranium-238 0.981 0.0121 0.0449 PCL/G 13 A 10/01/19 Uranium-238 0.981 0.119 0.0349 PCL/G 13 A 10/01/19 Uranium-236 -0.00137 0.0109 0.0246 U PCL/G 13 A 10/01/19 Plutonium-236 <td>13 A</td> <td>10/02/19</td> <td>Thorium 228</td> <td>0.004</td> <td>0.105</td> <td>0.0776</td> <td></td> <td>PCI/G</td>	13 A	10/02/19	Thorium 228	0.004	0.105	0.0776		PCI/G
13 A 1002/19 1160/um-229 0.03/1 0.03/7 0.03/2 0 PCI/G 13 A 10/02/19 Thorium-230 2.42 0.282 0.125 PCI/G 13 A 10/02/19 Thorium-232 0.804 0.163 0.0778 PCI/G 13 A 10/01/19 Uranium-232/234 1.01 0.121 0.0449 PCI/G 13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-232 -0.026 0.0318 0.0736 U PCI/G 13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-232/234 1.01 0.121 0.0449 PCI/G 13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Pl	13 A	10/02/19	The minute 220	0.930	0.164	0.100	TT	PCI/G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13 A	10/02/19	Thorium-229	0.0371	0.0377	0.0782	0	PCI/G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 A	10/02/19	Thorium-230	2.42	0.282	0.125		PCI/G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 A	10/02/19	Thorium-232	0.804	0.163	0.0778		PCI/G
13 A 10/01/19 Uranium-233/234 1.01 0.121 0.0449 PCI/G 13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-238 0.981 0.119 0.0349 PCI/G 13 A 10/01/19 Uranium-232 -0.026 0.0318 0.0736 U PCI/G 13 A 10/01/19 Uranium-232/234 1.01 0.121 0.0449 PCI/G 13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 1	13 A	10/01/19	Uranium-232	-0.026	0.0318	0.0736	U	PCI/G
13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-238 0.981 0.119 0.0349 PCI/G 13 A 10/01/19 Uranium-232 -0.026 0.0318 0.0736 U PCI/G 13 A 10/01/19 Uranium-233/234 1.01 0.121 0.0449 PCI/G 13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-236 0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Neptunium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G <td>13 A</td> <td>10/01/19</td> <td>Uranium-233/234</td> <td>1.01</td> <td>0.121</td> <td>0.0449</td> <td></td> <td>PCI/G</td>	13 A	10/01/19	Uranium-233/234	1.01	0.121	0.0449		PCI/G
13 A 10/01/19 Uranium-238 0.981 0.119 0.0349 PCI/G 13 A 10/01/19 Uranium-232 -0.026 0.0318 0.0736 U PCI/G 13 A 10/01/19 Uranium-232/234 1.01 0.121 0.0449 PCI/G 13 A 10/01/19 Uranium-235/236 0.0585 0.0321 0.028 PCI/G 13 A 10/01/19 Uranium-238 0.981 0.119 0.0349 PCI/G 13 A 10/01/19 Uranium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-244 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/01/19 Neptunium-236 -0.00137 0.0109 0.0246 U PCI/G	13 A	10/01/19	Uranium-235/236	0.0585	0.0321	0.028		PCI/G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 A	10/01/19	Uranium-238	0.981	0.119	0.0349		PCI/G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 A	10/01/19	Uranium-232	-0.026	0.0318	0.0736	U	PCI/G
13 A $10/01/19$ Uranium-235/236 0.0585 0.0321 0.028 PCI/G13 A $10/01/19$ Uranium-238 0.981 0.119 0.0349 PCI/G13 A $10/01/19$ Neptunium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-239/240 0.00247 0.0113 0.022 UPCI/G13 A $10/01/19$ Plutonium-242 0.017 0.0166 0.0253 UPCI/G13 A $10/01/19$ Plutonium-244 -0.00127 0.00606 0.0148 UPCI/G13 A $10/01/19$ Plutonium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-239/240 0.00247 0.0113 0.022 UPCI/G13 A $10/01/19$ Plutonium-244 -0.00127 0.00606 0.0148 UPCI/G13 A $10/01/19$ Plutonium-244 -0.00127 0.00606 0.0148 UPCI/G13 A $10/02/19$ Americium-243 0.00479 0.0115 0.0203 UPCI/G13 A $10/02/19$ Americium-243 0.00479 0.0115 0.0203 UPCI/G13 A $10/02/19$ Curium-243/244 -0.0036 0.00795 $0.$	13 A	10/01/19	Uranium-233/234	1.01	0.121	0.0449		PCI/G
13 A $10/01/19$ Uranium-238 0.981 0.119 0.0349 PCI/G13 A $10/01/19$ Neptunium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-239/240 0.00247 0.0113 0.022 UPCI/G13 A $10/01/19$ Plutonium-242 0.017 0.0166 0.0253 UPCI/G13 A $10/01/19$ Plutonium-244 -0.00127 0.00606 0.0148 UPCI/G13 A $10/01/19$ Neptunium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-239/240 0.00247 0.0113 0.022 UPCI/G13 A $10/01/19$ Plutonium-244 -0.00127 0.0166 0.0253 UPCI/G13 A $10/01/19$ Plutonium-244 -0.00127 0.00606 0.0148 UPCI/G13 A $10/02/19$ Americium-243 0.00479 0.0115 0.0203 UPCI/G13 A $10/02/19$ Americium-243 0.00479 0.0115 0.0203 UPCI/G13 A $10/02/19$ Curium-243/244 -0.0036 0.00795 0.0196 UPCI/G13 A $10/02/19$ Curium-245/246 -0.00139 0.00609	13 A	10/01/19	Uranium-235/236	0.0585	0.0321	0.028		PCI/G
13 A $10/01/19$ Neptunium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-239/240 0.00247 0.0113 0.022 UPCI/G13 A $10/01/19$ Plutonium-242 0.017 0.0166 0.0253 UPCI/G13 A $10/01/19$ Plutonium-244 -0.00127 0.00606 0.0148 UPCI/G13 A $10/01/19$ Plutonium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-236 -0.00137 0.0109 0.0246 UPCI/G13 A $10/01/19$ Plutonium-239/240 0.00247 0.0113 0.022 UPCI/G13 A $10/01/19$ Plutonium-242 0.017 0.0166 0.0253 UPCI/G13 A $10/01/19$ Plutonium-244 -0.00127 0.00606 0.0148 UPCI/G13 A $10/02/19$ Americium-241 0.00528 0.0103 0.0178 UPCI/G13 A $10/02/19$ Curium-243/244 -0.0036 0.00795 0.0196 UPCI/G13 A $10/02/19$ Curium-245/246 -0.00139 0.00609 0.0133 UPCI/G13 A $10/02/19$ Curium-245/246 -0.00139 </td <td>13 A</td> <td>10/01/19</td> <td>Uranium-238</td> <td>0.981</td> <td>0.119</td> <td>0.0349</td> <td></td> <td>PCI/G</td>	13 A	10/01/19	Uranium-238	0.981	0.119	0.0349		PCI/G
13 A10/01/19Plutonium-2160001370.01090.0246UPCI/G13 A10/01/19Plutonium-239/2400.002470.01130.022UPCI/G13 A10/01/19Plutonium-239/2400.002470.01130.022UPCI/G13 A10/01/19Plutonium-2420.0170.01660.0253UPCI/G13 A10/01/19Plutonium-244-0.001270.006060.0148UPCI/G13 A10/01/19Plutonium-236-0.001370.01090.0246UPCI/G13 A10/01/19Plutonium-236-0.001370.01090.0246UPCI/G13 A10/01/19Plutonium-239/2400.002470.01130.022UPCI/G13 A10/01/19Plutonium-2420.0170.01660.0253UPCI/G13 A10/01/19Plutonium-2420.0170.01660.0253UPCI/G13 A10/02/19Americium-2410.005280.01030.0178UPCI/G13 A10/02/19Americium-2430.004790.01150.0203UPCI/G13 A10/02/19Curium-243/244-0.00360.007950.0196UPCI/G13 A10/02/19Curium-243/244-0.00360.007950.0133UPCI/G13 A10/02/19Curium-245/246-0.001390.006090.0133UPCI/G13 A10/02/19Curium-245/246 <t< td=""><td>13 A</td><td>10/01/19</td><td>Neptunium-236</td><td>-0.00137</td><td>0.0109</td><td>0.0246</td><td>U</td><td>PCI/G</td></t<>	13 A	10/01/19	Neptunium-236	-0.00137	0.0109	0.0246	U	PCI/G
13 A 10/01/19 Plutonium-239/240 0.00137 0.0105 0.0210 0 PCI/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCI/G 13 A 10/01/19 Plutonium-229/240 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-244 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/01/19 Neptunium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-244 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/02/19 Americium-243 0.00479 <td>13 A</td> <td>10/01/19</td> <td>Plutonium-236</td> <td>-0.00137</td> <td>0.0109</td> <td>0.0246</td> <td>- U</td> <td>PCI/G</td>	13 A	10/01/19	Plutonium-236	-0.00137	0.0109	0.0246	- U	PCI/G
13 A 10/01/19 Plutonium-222 0.00247 0.0115 0.022 0 PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-244 -0.00127 0.00666 0.0148 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G 13 A 10/02/19 Americium-243 0.00479 0.	13 A	10/01/19	Plutonium-230/240	0.00137	0.0113	0.0240	<u> </u>	PCI/G
13 A 10/01/19 Plutonium-242 0.017 0.0106 0.0233 U PCI/G 13 A 10/01/19 Plutonium-244 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCI/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/02/19 Americium-241 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/02/19 Americium-243 0.00479 0.0115 0.0203 U PCI/G 13 A 10/02/19 Curium-243/244 -0.0036	13 4	10/01/10	Plutonium 242	0.00247	0.0115	0.022		PCI/G
13 A 10/01/19 Plutonum-244 -0.00127 0.00006 0.0148 U PCI/G 13 A 10/01/19 Neptunium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCI/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/02/19 Americium-241 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/02/19 Americium-243 0.00479 0.0115 0.0203 U PCI/G 13 A 10/02/19 Curium-243/244 -0.0036 0.00795 0.0196 U PCI/G 13 A 10/02/19 Curium-245/246 -0.00139	13 A 12 A	10/01/19	Dlutonium 244	0.017	0.0100	0.0233		PCI/G
13 A 10/01/19 Neptunum-236 -0.00137 0.0109 0.0246 U PCl/G 13 A 10/01/19 Plutonium-236 -0.00137 0.0109 0.0246 U PCl/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCl/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCl/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCl/G 13 A 10/01/19 Plutonium-244 -0.00127 0.00606 0.0148 U PCl/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCl/G 13 A 10/02/19 Americium-243/244 -0.0036 0.00795 0.0196 U PCl/G 13 A 10/02/19 Curium-245/246 -0.00139 0.00609 0.0133 U PCl/G 13 A 10/02/19 Americium-241 0.00528	13 A	10/01/19	Fiutomum-244	-0.00127	0.00000	0.0148		PCI/G
13 A 10/01/19 Plutonum-236 -0.00137 0.0109 0.0246 U PCI/G 13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-244 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G 13 A 10/02/19 Americium-243 0.00479 0.0115 0.0203 U PCI/G 13 A 10/02/19 Curium-243/244 -0.0036 0.00795 0.0196 U PCI/G 13 A 10/02/19 Curium-245/246 -0.00139 0.00609 0.0133 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G	15 A	10/01/19	Neptunium-236	-0.00137	0.0109	0.0246	U	PCI/G
13 A 10/01/19 Plutonium-239/240 0.00247 0.0113 0.022 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-244 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G 13 A 10/02/19 Americium-243 0.00479 0.0115 0.0203 U PCI/G 13 A 10/02/19 Curium-243/244 -0.0036 0.00795 0.0196 U PCI/G 13 A 10/02/19 Curium-245/246 -0.00139 0.00609 0.0133 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G	13 A	10/01/19	Plutonium-236	-0.00137	0.0109	0.0246	<u> </u>	PCI/G
13 A 10/01/19 Plutonium-242 0.017 0.0166 0.0253 U PCI/G 13 A 10/01/19 Plutonium-244 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G 13 A 10/02/19 Americium-243 0.00479 0.0115 0.0203 U PCI/G 13 A 10/02/19 Curium-243/244 -0.0036 0.00795 0.0196 U PCI/G 13 A 10/02/19 Curium-245/246 -0.00139 0.00609 0.0133 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G	13 A	10/01/19	Plutonium-239/240	0.00247	0.0113	0.022	U	PCI/G
13 A 10/01/19 Plutonium-244 -0.00127 0.00606 0.0148 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G 13 A 10/02/19 Americium-243 0.00479 0.0115 0.0203 U PCI/G 13 A 10/02/19 Curium-243/244 -0.0036 0.00795 0.0196 U PCI/G 13 A 10/02/19 Curium-245/246 -0.00139 0.00609 0.0133 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G	13 A	10/01/19	Plutonium-242	0.017	0.0166	0.0253	U	PCI/G
13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G 13 A 10/02/19 Americium-243 0.00479 0.0115 0.0203 U PCI/G 13 A 10/02/19 Curium-243/244 -0.0036 0.00795 0.0196 U PCI/G 13 A 10/02/19 Curium-245/246 -0.00139 0.00609 0.0133 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G	13 A	10/01/19	Plutonium-244	-0.00127	0.00606	0.0148	U	PCI/G
13 A 10/02/19 Americium-243 0.00479 0.0115 0.0203 U PCI/G 13 A 10/02/19 Curium-243/244 -0.0036 0.00795 0.0196 U PCI/G 13 A 10/02/19 Curium-245/246 -0.00139 0.00609 0.0133 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G	13 A	10/02/19	Americium-241	0.00528	0.0103	0.0178	U	PCI/G
13 A 10/02/19 Curium-243/244 -0.0036 0.00795 0.0196 U PCI/G 13 A 10/02/19 Curium-245/246 -0.00139 0.00609 0.0133 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G	13 A	10/02/19	Americium-243	0.00479	0.0115	0.0203	U	PCI/G
13 A 10/02/19 Curium-245/246 -0.00139 0.00609 0.0133 U PCI/G 13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G	13 A	10/02/19	Curium-243/244	-0.0036	0.00795	0.0196	U	PCI/G
13 A 10/02/19 Americium-241 0.00528 0.0103 0.0178 U PCI/G	13 A	10/02/19	Curium-245/246	-0.00139	0.00609	0.0133	U	PCI/G
	13 A	10/02/19	Americium-241	0.00528	0.0103	0.0178	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I abi	e B-I. Complete	Results from	the GEL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
13 A	10/02/19	Americium-243	0.00479	0.0115	0.0203	U	PCI/G
13 A	10/02/19	Curium-243/244	-0.0036	0.00795	0.0196	U	PCI/G
13 A	10/02/19	Curium-245/246	-0.00139	0.00609	0.0133	U	PCI/G
13 A	10/03/19	Neptunium-237	-0.00764	0.00961	0.0321	U	PCI/G
13 A	10/03/19	Neptunium-237	-0.00764	0.00961	0.0321	U	PCI/G
13 A	10/06/19	Plutonium-241	0.915	2.45	4.18	U	PCI/G
13 A	10/06/19	Plutonium-241	0.915	2.45	4.18	U	PCI/G
13 A	09/27/19	Nickel-63	0.284	0.405	0.684	U	PCI/G
13 A	09/26/19	Iron-55	-0.33	2.43	3.5	U	PCI/G
13 A	09/26/19	Technetium-99	-0.0267	0.35	0.596	U	PCI/G
13 A	09/26/19	Technetium-99	-0.0267	0.35	0.596	U	PCI/G
13 A	09/28/19	Tritium	0.257	2.26	4.02	U	PCI/G
13 A	09/28/19	Tritium	0.257	2.26	4.02	U	PCI/G
13 A	09/28/19	Tritium	83.6	24.9	13.3		%
13 A	09/28/19	Tritium	83.6	24.9	13.3		%
13 A	09/28/19	Carbon-14	-0.0804	1.46	2.57	U	PCI/G
13 A	09/28/19	Carbon-14	-0.0804	1.46	2.57	U	PCI/G
13 A	09/28/19	Carbon-14	91.5	3.02	2.5	_	%
13 A	09/28/19	Carbon-14	91.5	3.02	2.5		%
13 A	09/26/19	Nickel-59	0.219	0.87	1.59	U	PCI/G
13 A	09/25/19	Actinium-225	-1.7	1.99	3.45	U	PCI/G
13 A	09/25/19	Actinium-227	0	0 104	0 141	UI UI	PCI/G
13 A	09/25/19	Actinium-228	1 25	0.0901	0.063		PCI/G
13 A	09/25/19	Antimony-125	0.0221	0.0266	0.0462	IJ	PCI/G
13 A	09/25/19	Barium-137m	0.0221	0.0200	0.0402	0	PCI/G
13 A	09/25/19	Bismuth-212	1 34	0.0113	0.215		PCI/G
13 A	09/25/19	Bismuth-213	0.0264	0.0245	0.05	IJ	PCI/G
13 A	09/25/19	Bismuth-214	2 35	0.0200	0.0293		PCI/G
13 A	09/25/19	Cesium-134	0	0.0001	0.0223	Ш	PCI/G
13 A	09/25/19	Cesium-137	0.0809	0.0153	0.0220		PCI/G
13 A	09/25/19	Cobalt-60	-0.0062	0.0103	0.0100	IJ	PCI/G
13 A	09/25/19	Europium-152	-0.0249	0.0276	0.0464	<u> </u>	PCI/G
13 A	09/25/19	Europium-152	-0.00986	0.0270	0.0569	<u> </u>	PCI/G
13 A	09/25/19	Europium-155	0.00000	0.0563	0.0642	<u> </u>	PCI/G
13 A	09/25/19	Holmium-166m	-0.00106	0.0303	0.0042	 	PCI/G
13 A	09/25/19	Lead-210	2 45	3 21	5 57	<u> </u>	PCI/G
13 A	09/25/19	Lead-210	1 29	0.0376	0.03	0	PCI/G
13 A	09/25/19	Lead-212	2.73	0.0570	0.0341		PCI/G
13 A	09/25/19	Neptunium_239	-0.0688	0.003	0.0341	IT	PCI/G
13 A	09/25/19	Niobium-94	-0.0000	0.101	0.0154		PCI/G
13 A	09/25/19	Potassium-40	23.4	0.525	0.0134	01	PCI/G
13 A	09/25/19	Promethium_147		278	454	I.	PCI/G
13 A	09/25/19	Protactinium-231		0 224	0 220	<u>_</u>	PCI/G
13 A	09/25/19	Radium-226	2 35	0.0661	0.0293	01	PCI/G
13 A	09/25/19	Radium-228	1 25	0.0001	0.0275		PCI/G
13 A	09/25/19	Sodium-22	_0 00394	0.0701	0.003	I.	PCI/G
13 A	09/25/19	Tellurium-125m	3 82	5 44	9.0204	U	PCI/G
13 A	09/25/19	Thallium-208	0.413	0.0266	0.0156	0	PCI/G
13 A	09/25/19	Thorium-231	0.165	0.0200	0 322	I	PCI/G
13 A	09/25/19	Thorium-234	1 47	1 43	1 12	0	PCI/G
13 A	09/25/19	Thulium-171	0.02	13 1	27.2	I	PCI/G
13 A	09/25/19	Tin_126	9.92	0.0402	0.0452	U	PCI/G
13 A	10/02/19	Polonium-210	1 / 2	0.0492	0.0432	01	PCI/G
13 A	10/02/19	Thorium 220	1.40	0.342	0.110		PCI/C
13 A	10/01/19	Thorium-220	0.987	0.177	0.132	II	PCI/G
13 A	10/01/19	Thorium 220	0.055	0.0779	0.131	U	PCI/C
13 A 13 A	10/01/19	Thorium 222	2.3	0.249	0.112		PCI/G
13 A	10/01/19	Uranium 222	0.003	0.137	0.0949	11	PCI/C
13 A 13 A	10/01/19	Uranium 222/224	-0.0340	0.0034	0.14	U	PCI/G
13 A 13 A	10/01/19	Uranium 225/224	0.904	0.108	0.0298		PCI/G
13 A	10/01/19	101amum-233/230	0.0000	0.034	0.0364		UUU1

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
13 A	10/01/19	Uranium-238	1	0.11	0.00933		PCI/G
13 A	10/01/19	Neptunium-236	-0.00206	0.0053	0.0144	U	PCI/G
13 A	10/01/19	Plutonium-236	-0.00206	0.0053	0.0144	U	PCI/G
13 A	10/01/19	Plutonium-239/240	-0.00105	0.00945	0.0208	U	PCI/G
13 A	10/01/19	Plutonium-242	0.00105	0.00945	0.0200	<u> </u>	PCI/G
13 A	10/01/19	Plutonium 244	0.000774	0.0134	0.0304	<u> </u>	PCI/G
13 A	10/01/19	Plutomum-244	0.000971	0.00009	0.0113	<u> </u>	PCI/G
13 A	10/02/19	Americium-241	0.00784	0.0103	0.0132	<u> </u>	PCI/G
13 A	10/02/19	Americium-243	-0.00133	0.0106	0.0238	<u> </u>	PCI/G
13 A	10/02/19	Curium-243/244	0.00548	0.0131	0.0236	0	PCI/G
13 A	10/02/19	Curium-245/246	0	0.00645	0.00882	U	PCI/G
13 A	10/02/19	Neptunium-237	-0.0000637	0.00844	0.0177	U	PCI/G
13 A	10/05/19	Plutonium-241	0.569	1.7	2.9	U	PCI/G
13 A	09/30/19	Iodine-129	0.411	0.405	0.936	U	PCI/G
13 A	09/26/19	Nickel-63	0.347	0.436	0.734	U	PCI/G
13 A	09/26/19	Iron-55	-0.538	2.31	3.31	U	PCI/G
13 A	09/24/19	Technetium-99	-0.22	0.364	0.626	U	PCI/G
13 A	09/26/19	Tritium	-1.24	2.44	4.55	U	PCI/G
13 A	09/28/19	Carbon-14	0.317	1.5	2.61	U	PCI/G
13 A	09/25/19	Nickel-59	0.36	1.14	2.12	U	PCI/G
13 A	10/07/19	Strontium-90	-0.00885	0.00704	0.0137	U	PCI/G
13 A	10/07/19	Vttrium-90	-0.00885	0.00704	0.0137	U	PCI/G
13 R	09/17/19	Actinium-225	-0.537	0.00704	1 23	<u> </u>	PCI/G
13 D	09/17/19	Actinium 227	-0.537	0.700	0.0909		
13 D	09/17/19	Actinium-227	1 19	0.0872	0.0808	UI	PCI/G
13 B	09/17/19	Actinium-228	1.18	0.0707	0.0436	* *	PCI/G
13 B	09/17/19	Antimony-125	0.0129	0.0176	0.0303	U	PCI/G
13 B	09/17/19	Barium-13/m	0.0782	0.0101	0.0106		PCI/G
13 B	09/17/19	Bismuth-212	1.37	0.185	0.153		PCI/G
13 B	09/17/19	Bismuth-213	0	0.0313	0.0308	UI	PCI/G
13 B	09/17/19	Bismuth-214	2.26	0.0435	0.0211		PCI/G
13 B	09/17/19	Cesium-134	0	0.0148	0.0174	UI	PCI/G
13 B	09/17/19	Cesium-137	0.0826	0.0107	0.0112		PCI/G
13 B	09/17/19	Cobalt-60	-0.00176	0.0074	0.0124	U	PCI/G
13 B	09/17/19	Europium-152	-0.00871	0.0179	0.0305	U	PCI/G
13 B	09/17/19	Europium-154	0.0104	0.0273	0.041	U	PCI/G
13 B	09/17/19	Europium-155	0	0.0338	0.0336	UI	PCI/G
13 B	09/17/19	Holmium-166m	0.00227	0.012	0.0189	U	PCI/G
13 B	09/17/19	Lead-210	1.93	0.287	0.235		PCI/G
13 B	09/17/19	Lead-212	1.28	0.0233	0.0181		PCI/G
13 B	09/17/19	Lead-214	2 51	0.0253	0.0224		PCI/G
13 B	00/17/10	Nentunium 230	2.51	0.0435	0.0224	T II	PCI/G
13 D	09/17/19	Nichium 04	0	0.0062	0.0902		PCI/G
13 D	09/17/19	Determine 40	22.2	0.00902	0.0113	01	
13 B	09/17/19	Potassium-40	22.3	0.309	0.0994	* *	PCI/G
13 B	09/1//19	Prometnium-14/	8.06	15/	257	U	PCI/G
13 B	09/17/19	Protactinium-231	0	0.159	0.146	UI	PCI/G
13 B	09/17/19	Kadium-226	2.26	0.0435	0.0211		PCI/G
13 B	09/17/19	Radium-228	1.18	0.0707	0.0436		PCI/G
13 B	09/17/19	Sodium-22	0.0051	0.00967	0.0147	U	PCI/G
13 B	09/17/19	Tellurium-125m	0	3.78	4.32	UI	PCI/G
13 B	09/17/19	Thallium-208	0.411	0.0195	0.0108		PCI/G
13 B	09/17/19	Thorium-231	0.125	0.127	0.201	U	PCI/G
13 B	09/17/19	Thorium-234	1.24	0.292	0.276		PCI/G
13 B	09/17/19	Thulium-171	0	1.8	2.24	UI	PCI/G
13 B	09/17/19	Tin-126	0	0.0233	0.0201	UI	PCI/G
13 B	10/03/19	Polonium-210	1.35	0.302	0.18		PCI/G
13 B	10/02/19	Thorium-228	0.885	0.168	0.113		PCI/G
13 B	10/02/19	Thorium-229	0.0558	0.0546	0.0771	I I	PCI/G
13 B	10/02/19	Thorium-230	2 37	0 252	0.0532		PCI/G
13 B	10/02/19	Thorium-232	0.832	0.255	0.0552		PCI/G
13 B	10/01/10	Uranium 222	0.032	0.131	0.033	I I	PCI/C
13 D	10/01/19	Utanium-252	-0.0128	0.0344	0.0721	U	
13 B	10/01/19	Uranium-233/234	0.824	0.19	0.101	TT	PCI/G
13 B	10/01/19	Uranium-235/236	0.0531	0.0625	0.0813	U	PCI/G
13 B	10/01/19	Uranium-238	0.795	0.189	0.117		PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I abl	e B-I. Complete F	Kesults from	the GEL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
13 B	10/01/19	Neptunium-236	-0.00396	0.0058	0.0171	U	PCI/G
13 B	10/01/19	Plutonium-236	-0.00396	0.0058	0.0171	U	PCI/G
13 B	10/01/19	Plutonium-239/240	-0.00479	0.00744	0.02	U	PCI/G
13 B	10/01/19	Plutonium-242	0.00384	0.00741	0.0112	U	PCI/G
13 B	10/01/19	Plutonium-244	0.00565	0.00889	0.0133	U	PCI/G
13 B	10/02/19	Americium-241	0.00345	0.00741	0.0122	U	PCI/G
13 B	10/02/19	Americium-243	0.00312	0.0141	0.027	U	PCI/G
13 B	10/02/19	Curium-243/244	0.00512	0.00908	0.015	U	PCI/G
13 B	10/02/19	Curium-245/246	0.005	0.0107	0.0177	U	PCI/G
13 B	10/02/19	Neptunium-237	0.00213	0.0134	0.0253	U	PCI/G
13 B	10/05/19	Plutonium-241	0.184	1.73	2.97	U	PCI/G
13 B	09/30/19	Iodine-129	-0.151	0.196	0.34	U	PCI/G
13 B	09/26/19	Nickel-63	0.141	0.421	0.718	U	PCI/G
13 B	09/26/19	Iron-55	1.11	2.63	3.76	U	PCI/G
13 B	09/24/19	Technetium-99	0.104	0.352	0.596	U	PCI/G
13 B	09/30/19	Tritium	3.05	2.33	3.8	U	PCI/G
13 B	09/28/19	Carbon-14	-1.01	1.42	2.57	U	PCI/G
13 B	09/25/19	Nickel-59	-0.228	0.454	0.861	U	PCI/G
13 B	10/07/19	Strontium-90	-0.00313	0.00787	0.0143	Ū	PCI/G
13 B	10/07/19	Yttrium-90	-0.00313	0.00787	0.0143	U	PCI/G
13 C	09/28/19	Iodine-129	0.034	0.219	0.0119	U	PCI/G
13 C	09/28/19	Iodine-129	0.034	0.219	0.498	<u> </u>	PCI/G
13 C	09/28/19	Iodine-129	75.4	1.86	0.490	0	%
13 C	09/28/19	Iodine-129	75.4	1.86	0.694		0/0
13 C	09/18/19	Actinium-225	-0 348	0.6	0.885	IJ	PCI/G
13 C	09/18/19	Actinium-227	0.0495	0.0451	0.0562	<u> </u>	PCI/G
13 C	09/18/19	Actinium-227	1 15	0.0431	0.0302	0	PCI/G
13 C	09/18/19	Antimony_125	0.00645	0.0313	0.0280	II	PCI/G
13 C	09/18/19	Barium-137m	0.00043	0.0115	0.0197	0	PCI/G
13 C	00/18/10	Bismuth 212	1.3	0.0007	0.000035		PCI/G
13 C	09/18/19	Bismuth-213	1.5	0.12	0.0208	III	PCI/G
13 C	00/18/10	Bismuth 214	2	0.0210	0.0208	01	PCI/G
13 C	09/18/19	Cesium 134	2	0.0309	0.0132	I II	PCI/G
13 C	09/18/19	Cesium 137	0.0705	0.0107	0.00727	01	PCI/G
13 C	09/18/19	Cobalt 60	0.0703	0.00729	0.00727	I I	PCI/G
13 C	09/18/19	Europium 152	-0.00349	0.00333	0.00787	<u> </u>	PCI/G
13 C	09/18/19	Europium 154	-0.00704	0.0118	0.0195	<u> </u>	PCI/G
13 C	09/18/19	Europium 155	0.0124	0.0103	0.0200		PCI/G
13 C	09/10/19	Lutopium 166m	0 00272	0.0218	0.0237		
13 C	09/18/19	L and 210	0.00272	0.00733	0.0124	0	PCI/G
13 C	09/10/19	Lead 212	1.05	0.174	0.149		PCI/G
13 C	09/18/19	Lead-212	1.00	0.017	0.0120		PCI/G
13 C	09/18/19	Nontunium 220	0.0428	0.0298	0.0380	II	PCI/G
13 C	09/18/19	Nichium 04	0.0428	0.0396	0.0019	U	PCI/G
13 C	00/10/19	Detessium 40	0.00345	0.00349	0.00/19	U	PCI/C
13 C	09/18/19	Promothium 147	20.1	0.232	0.0004	ΤT	PCI/G
13 C	00/18/19	Protectinium 221	-0/.3	108	1/8		PCI/C
13 C	09/18/19	Protactinium-231	0	0.101	0.095/	UI	PCI/G
13 C	09/18/19	Radium-220	2	0.0309	0.0132		PCI/G
13 C	09/18/19	Kadium-228	1.15	0.0518	0.0286	Τĭ	PCI/G
13 C	09/18/19	Sodium-22	0.00314	0.0062	0.00953	U	PCI/G
13 U 12 C	09/18/19	Theilurium-125m	2.14	2.43	3.04	U	PCI/G
13 C	09/18/19	Thallium-208	0.349	0.0125	0.00706	TT	PCI/G
13 C	09/18/19	Thorium-231	0.107	0.152	0.128	U	PCI/G
13 C	09/18/19	Thorium-234	1.04	0.223	0.185		PCI/G
13 C	09/18/19	Thulium-171	0	1.38	1.47	UI	PCI/G
13 C	09/18/19	Tin-126	0	0.0155	0.0139	UI	PCI/G
13 C	10/03/19	Polonium-210	1.66	0.315	0.107		PCI/G
13 C	10/02/19	Thorium-228	0.895	0.155	0.113		PCI/G
13 C	10/02/19	Thorium-229	0.0455	0.0523	0.0819	U	PCI/G
113 C	10/02/19	Thorium-230	2.15	0.219	0.0698		PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
13 C	10/02/19	Thorium-232	0.848	0.14	0.0696		PCI/G
13 C	10/01/19	Uranium-232	0.00874	0.0402	0.0741	U	PCI/G
13 C	10/01/19	Uranium-233/234	1.01	0.14	0.0472		PCI/G
13 C	10/01/19	Uranium-235/236	0.0346	0.0399	0.0607	IJ	PCI/G
13 C	10/01/19	Uranium-238	1.09	0.148	0.066	0	PCI/G
13 C	10/01/19	Nentunium-236	0.00179	0.0112	0.0212	IJ	PCI/G
13 C	10/01/19	Diutonium 226	0.00179	0.0112	0.0212	<u> </u>	PCI/G
13 C	10/01/19	Plate sizes 220/240	0.001/9	0.0112	0.0212	U	PCI/G
13 C	10/01/19	Plutonium-239/240	0.00345	0.0133	0.0246	<u> </u>	PCI/G
13 C	10/01/19	Plutonium-242	0.0032	0.0135	0.0254	0	PCI/G
13 C	10/01/19	Plutonium-244	0	0.00765	0.0105	<u> </u>	PCI/G
13 C	10/02/19	Americium-241	0.00691	0.00769	0.00902	U	PCI/G
13 C	10/02/19	Americium-243	0.00196	0.0127	0.0249	U	PCI/G
13 C	10/02/19	Curium-243/244	0.00456	0.00717	0.0107	U	PCI/G
13 C	10/02/19	Curium-245/246	0.00598	0.00997	0.0141	U	PCI/G
13 C	10/02/19	Neptunium-237	-0.00163	0.0108	0.0252	U	PCI/G
13 C	10/05/19	Plutonium-241	-0.502	2.83	4.9	U	PCI/G
13 C	09/26/19	Nickel-63	0.377	0.474	0.798	U	PCI/G
13 C	09/28/19	Iodine-129	-0.172	0.431	0.689	U	PCI/G
13 C	09/26/19	Iron-55	1.24	2.55	3.63	Ū	PCI/G
13 C	09/24/19	Technetium-99	_0 122	0.36	0.616	U	PCI/G
13 C	09/26/19	Tritium	0.122	2 22	2 0/	U	PCI/G
13 C	09/20/19	Carbon 14	0.432	1.45	2.94		PCI/G
13 C	09/20/19	Carbon-14	-0.0153	1.45	2.54		PCI/G
13 C	09/26/19	INICKEI-59	0	1.68	1.9		PCI/G
13 C	10/07/19	Strontium-90	0.00767	0.00842	0.0141	U	PCI/G
13 C	10/07/19	Yttrium-90	0.00767	0.00842	0.0141	U	PCI/G
14 A	09/24/19	Actinium-225	-0.578	1.28	2.26	U	PCI/G
14 A	09/24/19	Actinium-227	0.0221	0.0616	0.0987	U	PCI/G
14 A	09/24/19	Actinium-228	1.05	0.0833	0.049		PCI/G
14 A	09/24/19	Antimony-125	0.00226	0.021	0.0361	U	PCI/G
14 A	09/24/19	Barium-137m	0.0901	0.0127	0.013		PCI/G
14 A	09/24/19	Bismuth-212	1.11	0.209	0.182		PCI/G
14 A	09/24/19	Bismuth-213	0.02	0.025	0.0396	U	PCI/G
14 A	09/24/19	Bismuth-214	1.55	0.0503	0.0259	0	PCI/G
14 A	09/24/19	Cesium-134	0	0.0303	0.0233	III	PCI/G
14 A	09/24/19	Cesium 137	0.0952	0.0177	0.021	01	PCI/G
14 A	09/24/19	Coholt 60	0.0952	0.00134	0.0138	TT	
14 A	09/24/19	Esperiment 152	0.0003	0.00940	0.0144	U	PCI/G
14 A	09/24/19	Europium-152	0.0346	0.026	0.0368	0	PCI/G
14 A	09/24/19	Europium-154	-0.0079	0.029	0.0491	0	PCI/G
14 A	09/24/19	Europium-155	0	0.0356	0.0408	UI	PCI/G
14 A	09/24/19	Holmium-166m	-0.00996	0.0133	0.0231	U	PCI/G
14 A	09/24/19	Lead-210	1.48	0.329	0.27		PCI/G
14 A	09/24/19	Lead-212	0.912	0.0281	0.0233		PCI/G
14 A	09/24/19	Lead-214	1.67	0.051	0.0973		PCI/G
14 A	09/24/19	Neptunium-239	-0.0328	0.0639	0.105	U	PCI/G
14 A	09/24/19	Niobium-94	0.0131	0.0112	0.0134	U	PCI/G
14 A	09/24/19	Potassium-40	14.8	0.426	0.112		PCI/G
14 A	09/24/19	Promethium-147	-112	186	303	IJ	PCI/G
14 A	09/24/19	Protactinium-231	0	0 174	0.17	<u> </u>	PCI/G
14 A	09/24/19	Radium-226	1 55	0.0502	0.0250	01	PCI/G
	09/24/19	Radium 220	1.33	0.0303	0.0239		PCI/G
14 A	09/24/19	Radium-228	1.05	0.0833	0.049	TT	PCI/G
14 A	09/24/19	Sodium-22	-0.00182	0.010/	0.0176	U	PCI/G
14 A	09/24/19	Tellurium-125m	0	4.81	5.45	UI	PCI/G
14 A	09/24/19	Thallium-208	0.308	0.0189	0.0135		PCI/G
14 A	09/24/19	Thorium-231	0.0998	0.151	0.242	U	PCI/G
14 A	09/24/19	Thorium-234	1.27	0.399	0.312		PCI/G
14 A	09/24/19	Thulium-171	0	2.34	2.62	UI	PCI/G
14 A	09/24/19	Tin-126	0	0.0258	0.0253	UI	PCI/G
14 A	10/02/19	Polonium-210	1.26	0.286	0.141		PCI/G
14 A	10/02/19	Thorium-228	0.832	0.157	0.121		PCI/G
14 A	10/02/19	Thorium-229	-0.0123	0.0721	0 139	Ū.	PCI/G
14 A	10/02/19	Thorium-230	1 52	0 193	0.0819		PCI/G
14 A	10/02/19	Thorium-232	0.820	0.125	0.0017		PCI/G
1 7 1 1	10/02/17	11011411-232	0.023	0.147	0.0755		1010

Table B-1. Complete Results from the GEL Laboratory

	Table	e B-I. Complete F	Kesults from	the GEL La	aborator	у	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
14 A	10/01/19	Uranium-232	-4.03E-09	0.0296	0.0581	U	PCI/G
14 A	10/01/19	Uranium-233/234	0.704	0.106	0.0703		PCI/G
14 A	10/01/19	Uranium-235/236	0.0221	0.0369	0.0626	U	PCI/G
14 A	10/01/19	Uranium-238	0.776	0.11	0.0624		PCI/G
14 A	10/01/19	Neptunium-236	-0.0000204	0.00665	0.0144	U	PCI/G
14 A	10/01/19	Plutonium-236	-0.0000204	0.00665	0.0144	U	PCI/G
14 A	10/01/19	Plutonium-239/240	-0.003	0.00724	0.0185	U	PCI/G
14 A	10/01/19	Plutonium-242	-0.00127	0.0101	0.0228	U	PCI/G
14 A	10/01/19	Plutonium-244	-0.000993	0.00474	0.0115	U	PCI/G
14 A	10/05/19	Americium-241	0.0134	0.0161	0.025	U	PCI/G
14 A	10/05/19	Americium-243	-0.0023	0.00958	0.0224	U	PCI/G
14 A	10/05/19	Curium-243/244	-0.00113	0.00537	0.0131	U	PCI/G
14 A	10/05/19	Curium-245/246	0	0.0057	0.00778	U	PCI/G
14 A	10/03/19	Neptunium-237	0.0021	0.0084	0.016	U	PCI/G
14 A	10/05/19	Plutonium-241	-0.791	1.9	3.31	U	PCI/G
14 A	09/26/19	Nickel-63	0.412	0.444	0.745	U	PCI/G
14 A	09/28/19	Iodine-129	0.103	0.172	0.613	U	PCI/G
14 A	09/26/19	Iron-55	1 91	2 46	3 48	<u> </u>	PCI/G
14 A	09/24/19	Technetium-99	-0.0959	0.323	0.553	U	PCI/G
14 A	09/27/19	Tritium	0.0372	2.18	3.88	U	PCI/G
14 A	09/28/19	Carbon-14	-1.38	1.4	2 57	<u> </u>	PCI/G
14 A	09/26/19	Nickel-59	-0.263	0.847	1 48	U	PCI/G
14 A	10/07/19	Strontium-90	-0.00838	0.0757	0.0141	<u> </u>	PCI/G
14 A	10/07/19	Vttrium-90	-0.00838	0.00757	0.0141	<u> </u>	PCI/G
14 R	09/24/19	Actinium-225	-0.697	1 21	1 94	<u> </u>	PCI/G
14 B	09/24/19	Actinium-227	0.0364	0.0826	0.084	<u> </u>	PCI/G
14 B	09/24/19	Actinium-228	0.0504	0.0591	0.0372	0	PCI/G
14 B	09/24/19	Antimony-125	_0.00542	0.0391	0.0372	II	PCI/G
14 B	09/24/19	Barium-137m	0.00542	0.00175	0.0272	0	PCI/G
14 B	09/24/19	Bismuth-212	0.0000	0.00930	0.00098		PCI/G
14 B	09/24/19	Bismuth-212	0.00926	0.147	0.125	II	PCI/G
14 B	09/24/19	Bismuth-214	1.47	0.0172	0.0178	0	PCI/G
14 B	09/24/19	Cesium-134	0	0.0410	0.0178	III	PCI/G
14 B	09/24/19	Cesium-137	0.0706	0.0113	0.00949	01	PCI/G
14 D	09/24/19	Cobalt 60	0.00188	0.0101	0.00949	ΤI	PCI/G
14 B	09/24/19	Europium-152	0.0118	0.00383	0.0293	<u> </u>	PCI/G
14 B	09/24/19	Europium-154	0.00595	0.0102	0.0233	<u> </u>	PCI/G
14 B	09/24/19	Europium-155	0.00575	0.0100	0.032		PCI/G
14 B	09/24/19	Holmium-166m	-0.00389	0.00912	0.0155	U	PCI/G
14 B	09/24/19	Lead-210	0.00307	1 27	2 15	<u> </u>	PCI/G
14 B	09/24/19	Lead-212	0.976	0.0253	0.0184	0	PCI/G
14 B	09/24/19	Lead-214	1.69	0.0233	0.0816		PCI/G
14 B	09/24/19	Neptunium-239	-0.0139	0.045	0.104	IJ	PCI/G
14 B	09/24/19	Niobium-94	0.00305	0.0001	0.00912	U	PCI/G
14 B	09/24/19	Potassium-40	15 5	0.333	0.0773	0	PCI/G
14 B	09/24/19	Promethium_147	143	170	303	I	PCI/G
14 B	09/24/19	Protactinium-231	143	0 154	0 148	U	PCI/G
14 B	09/24/19	Radium-226	1 47	0.134	0.148	01	PCI/G
14 B	09/24/19	Radium-228	0.004	0.0410	0.0372		PCI/G
14 B	09/24/19	Sodium-22	0.994	0.00571	0.0372	I	PCI/G
14 B	09/24/19	Tellurium-125m	_1 76	3.00070	5 75	U	PCI/G
14 B	09/24/19	Thallium-208	0.265	0.0155	0.00057	0	PCI/G
14 B	09/24/19	Thorium-231		0.0155	0.00937	I.I.	PCI/G
14 D	09/24/19	Thorium 224	-0.11	0.12	0.100		PCI/C
14 B	09/24/19	Thulium-171	0.030	6.02	10.5	U 11	PCI/G
14 B	09/24/19	Tin_126	0.538	0.25	0.02	<u>п</u>	PCI/G
14 B	10/03/10	Polonium_210	1.04	0.0303	0.03	01	PCI/G
14 D	10/03/19	Thorium 229	0.954	0.507	0.242		PCI/G
14 D 14 R	10/02/19	Thorium 220	0.0241	0.14/	0.0840	ΤT	PCI/G
14 D 14 P	10/02/19	Thorium 220	0.0341	0.0440	0.07	U	PCI/C
14 D	10/02/19	1 HOHUM-230	1.33	0.1/3	0.0028		

Table D 1 C lata D .14a f. th. CEL L.L 4

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
14 B	10/02/19	Thorium-232	0.73	0.128	0.0433	· ·	PCI/G
14 B	10/01/19	Uranium-232	0.00332	0.0427	0.079	U	PCI/G
14 B	10/01/19	Uranium-233/234	0.831	0.115	0.0688		PCI/G
14 B	10/01/19	Uranium-235/236	0.03	0.0389	0.0635	IJ	PCI/G
14 B	10/01/19	Uranium-238	0.03	0.0505	0.0633		PCI/G
14 P	10/03/10	Nentunium 226	0.021	0.105	0.0033	TT	PCI/G
14 D	10/03/19	Distantium 226	-0.00123	0.0066	0.0147	<u> </u>	PCI/G
14 B	10/03/19	Plutonium-236	-0.00125	0.0006	0.014/	<u> </u>	PCI/G
14 B	10/03/19	Plutonium-239/240	-0.0000549	0.00857	0.0174	<u>U</u>	PCI/G
14 B	10/03/19	Plutonium-242	0.0143	0.015	0.0209	U	PCI/G
14 B	10/03/19	Plutonium-244	-0.000604	0.00507	0.0112	U	PCI/G
14 B	10/02/19	Americium-241	0.00399	0.00706	0.00599	U	PCI/G
14 B	10/02/19	Americium-243	-0.00121	0.012	0.0258	U	PCI/G
14 B	10/02/19	Curium-243/244	0.00196	0.00753	0.014	U	PCI/G
14 B	10/02/19	Curium-245/246	0	0.00567	0.00775	U	PCI/G
14 B	10/03/19	Neptunium-237	-0.00723	0.00752	0.0222	U	PCI/G
14 B	10/05/19	Plutonium-241	-0.208	1.77	3.05	U	PCI/G
14 B	09/26/19	Nickel-63	0.232	0.446	0.756	U	PCI/G
14 B	09/28/19	Iodine-129	-0.101	0.483	0.795	<u> </u>	PCI/G
14 D	00/26/10	Iron 55	-0.101	2.08	2.01	<u> </u>	PCI/G
14 B	00/24/10	Technetium 00	0.0202	0.222	0.565	U	PCI/G
14 D	09/24/19	Tuiting	0.0292	0.552	0.505		PCI/G
14 B	09/27/19	I ritium	0.378	2.38	4.23	U	PCI/G
14 B	09/28/19	Carbon-14	-0.148	1.51	2.66	<u> </u>	PCI/G
14 B	09/26/19	Nickel-59	0.0119	0.902	1.62	U	PCI/G
14 B	10/07/19	Strontium-90	-0.00125	0.00788	0.0142	U	PCI/G
14 B	10/07/19	Yttrium-90	-0.00125	0.00788	0.0142	U	PCI/G
14 C	09/24/19	Actinium-225	-0.336	1.49	2.4	U	PCI/G
14 C	09/24/19	Actinium-227	0.0467	0.0686	0.0997	U	PCI/G
14 C	09/24/19	Actinium-228	1.06	0.0717	0.0443		PCI/G
14 C	09/24/19	Antimony-125	0.00311	0.0188	0.0328	U	PCI/G
14 C	09/24/19	Barium-137m	0.049	0.0109	0.0111	_	PCI/G
14 C	09/24/19	Bismuth_212	1 14	0.0105	0.164		PCI/G
14 C	09/24/19	Bismuth 212	0.0163	0.0208	0.104	IT	PCI/G
14 C	09/24/19	Dismuth 214	0.0103	0.0208	0.0309	0	
14 C	09/24/19	Contract 124	1.34	0.04/4	0.0223	TT	
14 C	09/24/19	Cesium-134	0	0.0141	0.0181	UI	PCI/G
14 C	09/24/19	Cesium-137	0.0518	0.0115	0.0117		PCI/G
14 C	09/24/19	Cobalt-60	0.00515	0.0078	0.014	U	PCI/G
14 C	09/24/19	Europium-152	-0.00344	0.0201	0.035	U	PCI/G
14 C	09/24/19	Europium-154	-0.00195	0.0255	0.0408	U	PCI/G
14 C	09/24/19	Europium-155	0.0479	0.0486	0.0495	U	PCI/G
14 C	09/24/19	Holmium-166m	-0.00479	0.0114	0.0188	U	PCI/G
14 C	09/24/19	Lead-210	1.52	2.68	2.88	U	PCI/G
14 C	09/24/19	Lead-212	1.04	0.0299	0.0219		PCI/G
14 C	09/24/19	Lead-214	0	0.0526	0.0948	UI	PCI/G
14 C	09/24/19	Neptunium-239	0.00181	0.0712	0 119	U	PCI/G
14 C	09/24/19	Niobium-94	0.00101	0.013	0.0110	<u> </u>	PCI/G
14 C	09/24/10	Potassium 40	15.0	0.015	0.0119	01	PCI/G
14 C	00/24/19	Dromothium 147	10.9	0.300	2.102	I.I.	PCI/C
14 C	09/24/19	Protectivities 221	-101	0.175	0.17	U T TT	PCI/G
14 C	09/24/19	Protactinium-231	0	0.175	0.17	UI	PCI/G
14 C	09/24/19	Radium-226	1.54	0.0474	0.0223		PCI/G
14 C	09/24/19	Radium-228	1.06	0.0717	0.0443		PCI/G
14 C	09/24/19	Sodium-22	-0.000483	0.00916	0.0147	U	PCI/G
14 C	09/24/19	Tellurium-125m	2.92	4.48	6.49	U	PCI/G
14 C	09/24/19	Thallium-208	0.296	0.0179	0.0117		PCI/G
14 C	09/24/19	Thorium-231	-0.0557	0.146	0.227	U	PCI/G
14 C	09/24/19	Thorium-234	1.1	0.807	0.758		PCI/G
14 C	09/24/19	Thulium-171	2.4	7.47	13	U	PCI/G
14 C	09/24/19	Tin-126	0.0333	0.0372	0.0394	Ū	PCI/G
14 C	10/02/19	Polonium-210	0.0555	0.0372	0.122	U	PCI/G
14 C	10/02/19	Thorium-228	0.955	0.140	0.0001		PCI/G
14 C	10/02/19	Thomas 220	0.073	0.149	0.0901	TT	DCI/C
14 C	10/02/19	Thorium-229	0.0227	0.0545	0.0962	U	PCI/G
14 C	10/02/19	1 norium-230	1.23	0.171	0.096		PCI/G
14 C	10/02/19	Thorium-232	0.615	0.118	0.0432		PCI/G

Table B-1. Complete Results from the GEL Laboratory

	Tabl	e B-1. Complete R	lesults from t	the GEL La	borator	У	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
14 C	10/01/19	Uranium-232	-0.00679	0.0421	0.0809	U	PCI/G
14 C	10/01/19	Uranium-233/234	0.743	0.111	0.0661		PCI/G
14 C	10/01/19	Uranium-235/236	0.0469	0.0419	0.0631	U	PCI/G
14 C	10/01/19	Uranium-238	0.678	0.106	0.0661		PCI/G
14 C	10/03/19	Neptunium-236	-0.000712	0.00598	0.0132	U	PCI/G
14 C	10/03/19	Plutonium-236	-0.000712	0.00598	0.0132	U	PCI/G
14 C	10/03/19	Plutonium-239/240	0.00555	0.0084	0.0128	U	PCI/G
14 C	10/03/19	Plutonium-242	0.00661	0.0161	0.0291	U	PCI/G
14 C	10/03/19	Plutonium-244	0.00243	0.0072	0.0128	Ū	PCI/G
14 C	10/02/19	Americium-241	-0.0000244	0.00795	0.0172	U	PCI/G
14 C	10/02/19	Americium-243	0.00741	0.0175	0.0314	<u> </u>	PCI/G
14 C	10/02/19	Curium-243/244	-0.00122	0.00582	0.0142	<u> </u>	PCI/G
14 C	10/02/19	Curium-245/246	-0.00114	0.00754	0.0176	<u> </u>	PCI/G
14 C	10/03/19	Neptunium-237	0.000244	0.00904	0.0193	<u> </u>	PCI/G
14 C	10/05/19	Plutonium-241	-0.32	2.06	3 56	<u> </u>	PCI/G
14 C	09/26/19	Nickel-63	0.646	0.439	0.725	<u> </u>	PCI/G
14 C	09/20/19	Indina 120	0.040	0.439	0.723	<u> </u>	PCI/G
14 C	09/26/19	Iron 55	0.265	2 25	2.29	<u> </u>	PCI/G
14 C	09/20/19	Tashastiya 00	-0.100	0.224	0.540	U	
14 C	09/25/19	Technetium-99	0.125	0.324	0.549	<u> </u>	PCI/G
14 C	09/27/19	I ritium	2.42	2.46	4.1	<u> </u>	PCI/G
14 C	09/28/19	Carbon-14	-0.214	1.48	2.62	<u> </u>	PCI/G
14 C	09/26/19	Nickel-59	-0.351	1.22	2.14	<u> </u>	PCI/G
14 C	10/08/19	Strontium-90	0.0137	0.0089	0.0146	<u> </u>	PCI/G
14 C	10/08/19	Yttrium-90	0.0137	0.0089	0.0146	<u> </u>	PCI/G
15 A	10/07/19	Strontium-90	0.00254	0.00819	0.0143	U	PCI/G
15 A	10/07/19	Yttrium-90	0.00254	0.00819	0.0143	U	PCI/G
15 A	10/07/19	Strontium-90	0.00254	0.00819	0.0143	U	PCI/G
15 A	10/07/19	Yttrium-90	0.00254	0.00819	0.0143	U	PCI/G
15 A	09/24/19	Actinium-225	0.369	1.44	2.35	U	PCI/G
15 A	09/24/19	Actinium-227	0.0782	0.0633	0.0972	U	PCI/G
15 A	09/24/19	Actinium-228	1.02	0.0723	0.0471		PCI/G
15 A	09/24/19	Antimony-125	0.00927	0.0181	0.0321	U	PCI/G
15 A	09/24/19	Barium-137m	0.0806	0.0149	0.0115		PCI/G
15 A	09/24/19	Bismuth-212	1.23	0.19	0.158		PCI/G
15 A	09/24/19	Bismuth-213	0.01	0.02	0.0354	U	PCI/G
15 A	09/24/19	Bismuth-214	1.27	0.0427	0.0217		PCI/G
15 A	09/24/19	Cesium-134	0	0.0173	0.0177	UI	PCI/G
15 A	09/24/19	Cesium-137	0.0852	0.0158	0.0122		PCI/G
15 A	09/24/19	Cobalt-60	0.00315	0.00748	0.0135	U	PCI/G
15 A	09/24/19	Europium-152	-0.0064	0.0193	0.0338	U	PCI/G
15 A	09/24/19	Europium-154	-0.00324	0.0268	0.0435	U	PCI/G
15 A	09/24/19	Europium-155	0.0474	0.0488	0.0493	U	PCI/G
15 A	09/24/19	Holmium-166m	0.0108	0.0115	0.0203	U	PCI/G
15 A	09/24/19	Lead-210	0	3.38	3.52	UI	PCI/G
15 A	09/24/19	Lead-212	1.07	0.0291	0.0217		PCI/G
15 A	09/24/19	Lead-214	1.54	0.0488	0.0838		PCI/G
15 A	09/24/19	Nentunium-239	-0.0227	0.0724	0.12	IJ	PCI/G
15 A	09/24/19	Niohium-94	0.0227	0.00989	0.12	<u> </u>	PCI/G
15 A	09/24/19	Potassium-40	25.5	0.465	0.0977		PCI/G
15 A	09/24/19	Promethium-147	172	260	337	II	PCI/G
15 A	09/24/19	Protectinium 231	1/2	0.16	0.167		PCI/G
15 A	09/24/19	Padium 226	1.27	0.10	0.107	01	PCI/G
15 A	09/24/19	Radium-220	1.27	0.0427	0.0217		
15 A	09/24/19	Radium-226	0.0007((0.0723	0.04/1	TT	PCI/G
15 A	09/24/19	Tallurium 125	-0.000766	0.00962	0.0157	U 11	PCI/G
15 A	09/24/19	Theilurium-125m	0.226	4.53	0.09	U	PCI/G
15 A	09/24/19	Thailium-208	0.307	0.0175	0.0121		PCI/G
15 A	09/24/19	Thorium-231	0.0465	0.141	0.227	<u> </u>	PCI/G
15 A	09/24/19	Thorium-234	0.65	0.752	0.805	<u> </u>	PCI/G
15 A	09/24/19	Thulium-171	-1.36	8.76	15	U	PCI/G
15 A	09/24/19	Tin-126	0	0.0349	0.0347	UI	PCI/G

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
15 A	10/02/19	Polonium-210	1.2	0.263	0.174		PCI/G
15 A	10/02/19	Thorium-228	0.747	0.15	0.117		PCI/G
15 A	10/02/19	Thorium-229	0.0802	0.0605	0.0827	U	PCI/G
15 A	10/02/19	Thorium-230	0.911	0.157	0.109		PCI/G
15 A	10/02/19	Thorium-232	0.699	0.132	0.0588		PCI/G
15 A	10/01/19	Uranium-232	-0.0325	0.0476	0.0952	U	PCI/G
15 A	10/01/19	Uranium-233/234	0.641	0.0993	0.0587		PCI/G
15 A	10/01/19	Uranium-235/236	0.0474	0.0342	0.0448		PCI/G
15 A	10/01/19	Uranium-238	0.621	0.0979	0.0587		PCI/G
15 A	10/01/19	Neptunium-236	-0.00402	0.00755	0.0198	U	PCI/G
15 A	10/01/19	Plutonium-236	-0.00402	0.00755	0.0198	U	PCI/G
15 A	10/01/19	Plutonium-239/240	0.00374	0.0114	0.0212	U	PCI/G
15 A	10/01/19	Plutonium-242	-0.00195	0.011	0.0238	U	PCI/G
15 A	10/01/19	Plutonium-244	0.00476	0.00794	0.0112	U	PCI/G
15 A	10/02/19	Americium-241	0.00476	0.00793	0.0112	U	PCI/G
15 A	10/02/19	Americium-243	-0.00746	0.0133	0.0308	U	PCI/G
15 A	10/02/19	Curium-243/244	0.00187	0.00718	0.0133	U	PCI/G
15 A	10/02/19	Curium-245/246	0.00359	0.0106	0.0192	U	PCI/G
15 A	10/03/19	Neptunium-237	-0.000708	0.00433	0.0104	U	PCI/G
15 A	10/05/19	Plutonium-241	-2.03	1.8	3.19	U	PCI/G
15 A	09/26/19	Nickel-63	0.335	0.369	0.619	U	PCI/G
15 A	09/28/19	Iodine-129	-0.134	0.385	0.674	U	PCI/G
15 A	09/26/19	Iron-55	-0.512	2.32	3.35	U	PCI/G
15 A	09/25/19	Technetium-99	-0.00452	0.372	0.634	U	PCI/G
15 A	09/27/19	Tritium	-0.716	2.12	3 91	U	PCI/G
15 A	09/28/19	Carbon-14	-0.128	1 45	2 55	<u> </u>	PCI/G
15 A	09/26/19	Nickel-59	-0.447	0.819	1 39	U	PCI/G
15 A	10/07/19	Strontium-90	-0.0078	0.015	0.0142	<u> </u>	PCI/G
15 A	10/07/19	Vttrium-90	-0.0078	0.00766	0.0142	<u> </u>	PCI/G
15 R	09/24/19	Actinium_225	-0.0078	1 39	2 36	<u> </u>	PCI/G
15 B	09/24/19	Actinium-227	0.0161	0.0572	0.0982	<u> </u>	PCI/G
15 B	09/24/19	Actinium 228	1.01	0.0572	0.0782	0	PCI/G
15 B	09/24/19	Actinum-226	0.0108	0.0079	0.0422	ĨĬ	PCI/G
15 B	09/24/19	Barium 137m	0.0703	0.0100	0.0321	0	PCI/G
15 B	09/24/19	Bismuth_212	1 14	0.0123	0.153		PCI/G
15 B	09/24/19	Bismuth 213	0.0171	0.223	0.155	ΙI	PCI/G
15 B	09/24/19	Bismuth-214	1 23	0.0208	0.0338	0	PCI/G
15 B	09/24/19	Cesium 134	1.25	0.0433	0.0217	I II	PCI/G
15 B	09/24/19	Cesium 137	0.0838	0.0149	0.0110	01	PCI/G
15 B	09/24/19	Cobalt 60	0.00184	0.013	0.0119	ΙI	PCI/G
15 B	09/24/19	Europium 152	0.00184	0.00709	0.0123	U	PCI/G
15 D	09/24/19	Europium 154	-0.00080	0.0208	0.0349	U	PCI/G
15 D	09/24/19	Europium 155	-0.0190	0.0228	0.0383	U	PCI/G
15 D	09/24/19	Europium-155	0.0311	0.034	0.00	U	PCI/G
15 D	09/24/19	L and 210	0.00333	0.0107	2.04		PCI/G
15 D	09/24/19	Lead-210	0.026	4.02	0.0217	01	PCI/G
15 D	09/24/19	Lead-212	0.930	0.0289	0.0217		PCI/G
15 D	09/24/19	Nontunium 220	0.122	0.0481	0.0773	II	PCI/G
15 D	09/24/19	Nichium 04	0.132	0.00619	0.139	U	PCI/G
15 D	09/24/19	Niobium-94	0.00907	0.00018	0.0113	0	PCI/G
15 B	09/24/19	Potassium-40	23.2	0.415	0.0913	TT	PCI/G
15 D	09/24/19	Prometinium-14/	35.5	0.142	0 160		PCI/G
15 B	09/24/19	Protactinium-231	0	0.142	0.169	UI	PCI/G
15 B	09/24/19	Radium-220	1.23	0.0433	0.0219		PCI/G
15 B	09/24/19	Radium-228	1.01	0.0679	0.0422	TT	PCI/G
15 B	09/24/19	Sodium-22	-0.00727	0.00819	0.0137	U 1	PCI/G
13 B	09/24/19	The Iline 200	-2.41	4.47	1.74	U	PCI/G
15 B	09/24/19	1 hallium-208	0.31	0.0199	0.0116	T	PCI/G
15 B	09/24/19	1 norium-231	0.00524	0.156	0.236	U	PCI/G
15 B	09/24/19	1 norium-234	1.91	1.08	1.06	T Y	PCI/G
15 B	09/24/19	Thulium-171	2.26	12.3	19.7	U	PCI/G
15 B	09/24/19	11n-126	0	0.0466	0.0431	UI	PCI/G
15 B	10/03/19	Polonium-210	1.02	0.243	0.173		PCI/G

Table B-1. Complete Results from the GEL Laboratory

	1 adi	e B-I. Complete R	esuits from	the GEL La	adorator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
15 B	10/02/19	Thorium-228	0.934	0.172	0.134		PCI/G
15 B	10/02/19	Thorium-229	0.0525	0.0656	0.106	U	PCI/G
15 B	10/02/19	Thorium-230	1.12	0.172	0.0724		PCI/G
15 B	10/02/19	Thorium-232	0.764	0.14	0.0196		PCI/G
15 B	10/01/19	Uranium-232	-0.0818	0.0652	0.133	U	PCI/G
15 B	10/01/19	Uranium-233/234	0.66	0.0909	0.0414		PCI/G
15 B	10/01/19	Uranium-235/236	0.0465	0.0278	0.0297		PCI/G
15 B	10/01/19	Uranium-238	0.67	0.0908	0.0341		PCI/G
15 B	10/01/19	Neptunium-236	-0.0085	0.00823	0.0233	IJ	PCI/G
15 B	10/01/19	Plutonium-236	-0.0085	0.00823	0.0233	U	PCI/G
15 B	10/01/19	Plutonium-239/240	-0.00103	0.00023	0.0255	<u> </u>	PCI/G
15 B	10/01/19	Plutonium 242	0.00103	0.0125	0.0234	U	PCI/G
15 D	10/01/19	Plutonium 244	-0.000842	0.00393	0.019	<u> </u>	PCI/G
15 D	10/01/19	Amoriaium 241	0.00449	0.00749	0.0100	U	PCI/G
15 D	10/02/19		-0.0018	0.00748	0.0175	U	PCI/G
15 B	10/02/19	Americium-243	0.00094	0.00962	0.0155	<u> </u>	PCI/G
15 B	10/02/19	Curium-243/244	-0.001/5	0.0045	0.0122	<u> </u>	PCI/G
15 B	10/02/19	Curium-245/246	0.00134	0.00589	0.0103	<u> </u>	PCI/G
15 B	10/03/19	Neptunium-237	-0.00241	0.00539	0.0156	U	PCI/G
15 B	10/06/19	Plutonium-241	0.0357	1.64	2.83	<u> </u>	PCI/G
15 B	09/26/19	Nickel-63	0.0724	0.394	0.676	<u> </u>	PCI/G
15 B	09/28/19	Iodine-129	-0.0738	0.237	0.468	U	PCI/G
15 B	09/26/19	Iron-55	1.55	2.37	3.32	U	PCI/G
15 B	09/25/19	Technetium-99	-0.285	0.306	0.528	U	PCI/G
15 B	09/27/19	Tritium	0.811	2.46	4.32	U	PCI/G
15 B	09/28/19	Carbon-14	0.331	1.5	2.59	U	PCI/G
15 B	09/26/19	Nickel-59	0.407	0.435	1.13	U	PCI/G
15 B	10/09/19	Strontium-90	0.00517	0.00849	0.0147	U	PCI/G
15 B	10/09/19	Yttrium-90	0.00517	0.00849	0.0147	U	PCI/G
15 C	09/25/19	Actinium-225	-0.465	1.42	2.28	U	PCI/G
15 C	09/25/19	Actinium-227	0.00377	0.0551	0.088	U	PCI/G
15 C	09/25/19	Actinium-228	1.08	0.0683	0.0416		PCI/G
15 C	09/25/19	Antimony-125	-0.00611	0.0168	0.0287	U	PCI/G
15 C	09/25/19	Barium-137m	0.0652	0.0098	0.0103		PCI/G
15 C	09/25/19	Bismuth-212	1.13	0.169	0.14		PCI/G
15 C	09/25/19	Bismuth-213	-0.00262	0.0191	0.0327	U	PCI/G
15 C	09/25/19	Bismuth-214	1.33	0.041	0.0201		PCI/G
15 C	09/25/19	Cesium-134	0	0.014	0.0167	UI	PCI/G
15 C	09/25/19	Cesium-137	0.0689	0.0104	0.0109		PCI/G
15 C	09/25/19	Cobalt-60	-0.00266	0.00701	0.0119	U	PCI/G
15 C	09/25/19	Europium-152	-0.014	0.0189	0.031	U	PCI/G
15 C	09/25/19	Europium-154	-0.0116	0.025	0.039	U	PCI/G
15 C	09/25/19	Europium-155	0	0.0496	0.0446	UI	PCI/G
15 C	09/25/19	Holmium-166m	-0.00623	0.011	0.0181	U	PCI/G
15 C	09/25/19	Lead-210	0.485	1.87	2.58	U	PCI/G
15 C	09/25/19	Lead-212	1.06	0.0268	0.0197		PCI/G
15 C	09/25/19	Lead-214	1.48	0.0435	0.0233		PCI/G
15 C	09/25/19	Neptunium-239	0.0803	0.0848	0.112	U	PCI/G
15 C	09/25/19	Niobium-94	0.00566	0.00874	0.0106	Ū	PCI/G
15 C	09/25/19	Potassium-40	24.8	0.418	0.0858		PCI/G
15 C	09/25/19	Promethium-147	209	201	315	U	PCI/G
15 C	09/25/19	Protactinium-231	0	0.158	0.157	ŪI	PCI/G
15 C	09/25/19	Radium-226	1 33	0.041	0.0201	51	PCI/G
15 C	09/25/19	Radium-228	1.05	0.0683	0.0416		PCI/G
15 C	09/25/19	Sodium-22	_0.00388	0.0005	0.014	IJ	PCI/G
15 C	09/25/19	Tellurium_125m	0.00388	<u> </u>	6.11	U	PCI/G
15 C	09/25/19	Thallium_208	0.335	0.0142	0.11	0	PCI/G
15 C	09/25/19	Thorium-231	0.323	0.0142	0.0104	II	PCI/G
15 C	09/25/19	Thorium-234	0.00185	0.132	0.200	U	PCI/G
15 C	09/25/19	Thulium-171	6.01	10.1	11 0	U	PCI/G
15 C	09/25/19	Tin 126	0.91	10.1	0.0205	<u> </u>	DCI/C
130	09/23/19	1111-120	0	0.0342	0.0303	UI	ru/u

14. C 41. CELI . 1. 1 4 ъ .

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
15 C	10/03/19	Polonium-210	0.642	0.198	0.162	-	PCI/G
15 C	10/02/19	Thorium-228	0.715	0.161	0.156		PCI/G
15 C	10/02/19	Thorium-229	0.0597	0.0675	0.107	U	PCI/G
15 C	10/02/19	Thorium-230	1.1	0.174	0.0953	_	PCI/G
15 C	10/02/19	Thorium-232	0.726	0.147	0.112		PCI/G
15 C	10/01/19	Uranium-232	-0.0573	0.0476	0.102	II	PCI/G
15 C	10/01/19	Uronium 222/224	-0.0575	0.0470	0.102	0	PCI/G
15 C	10/01/19		0.012	0.0893	0.0302	TT	PCI/G
15 C	10/01/19		0.0130	0.022	0.0343	0	PCI/G
150	10/01/19	Uranium-238	0.625	0.0876	0.0298	* *	PCI/G
15 C	10/01/19	Neptunium-236	-0.00394	0.00577	0.0171	<u> </u>	PCI/G
15 C	10/01/19	Plutonium-236	-0.00394	0.00577	0.0171	U	PCI/G
15 C	10/01/19	Plutonium-239/240	0.00844	0.0104	0.015	U	PCI/G
15 C	10/01/19	Plutonium-242	-0.0000842	0.0098	0.0203	U	PCI/G
15 C	10/01/19	Plutonium-244	0	0.00413	0.00565	U	PCI/G
15 C	10/02/19	Americium-241	0.00178	0.0115	0.0227	U	PCI/G
15 C	10/02/19	Americium-243	0.0131	0.0148	0.0221	U	PCI/G
15 C	10/02/19	Curium-243/244	0.00368	0.00913	0.0162	U	PCI/G
15 C	10/02/19	Curium-245/246	0	0.00561	0.00766	U	PCI/G
15 C	10/03/19	Neptunium-237	-0.00553	0.00892	0.0284	U	PCI/G
15 C	10/06/19	Plutonium-241	-0.16	1.62	2.79	U	PCI/G
15 C	09/26/19	Nickel-63	0.121	0.401	0.685	U	PCI/G
15 C	09/28/19	Iodine-129	-0.121	0.101	0.398	<u> </u>	PCI/G
15 C	09/26/19	Iron 55	0.120	2 27	3 21	<u> </u>	PCI/G
15 C	09/25/19	Technetium 00	0.0977	0.287	0.401	U	PCI/G
15 C	09/23/19	Tritizza	-0.0977	2.44	4.21	<u> </u>	
15 C	09/27/19	Carbar 14	0.303	2.44	4.51	<u> </u>	PCI/G
150	09/28/19	Carbon-14	-0.126	1.4/	2.39	<u> </u>	PCI/G
15 C	09/26/19	Nickel-59	0.162	0.85	1.53	<u> </u>	PCI/G
15 C	10/07/19	Strontium-90	0.00397	0.00827	0.0142	<u> </u>	PCI/G
15 C	10/07/19	Yttrium-90	0.00397	0.00827	0.0142	U	PCI/G
16 A	10/05/19	Strontium-90	0.00146	0.00843	0.0149	U	PCI/G
16 A	10/05/19	Yttrium-90	0.00146	0.00843	0.0149	U	PCI/G
16 A	09/27/19	Actinium-225	-1.41	1.87	3.17	U	PCI/G
16 A	09/27/19	Actinium-227	0.0285	0.0853	0.105	U	PCI/G
16 A	09/27/19	Actinium-228	1.03	0.074	0.0428		PCI/G
16 A	09/27/19	Antimony-125	-0.00311	0.0198	0.0333	U	PCI/G
16 A	09/27/19	Barium-137m	0.0707	0.0117	0.0116		PCI/G
16 A	09/27/19	Bismuth-212	1.02	0.187	0.161		PCI/G
16 A	09/27/19	Bismuth-213	0.0114	0.0224	0.0382	U	PCI/G
16 A	09/27/19	Bismuth-214	1.68	0.0479	0.0224		PCI/G
16 A	09/27/19	Cesium-134	0	0.0194	0.0181	UI	PCI/G
16 A	09/27/19	Cesium-137	0.0747	0.0123	0.0122		PCI/G
16 A	09/27/19	Cobalt-60	0.0045	0.0071	0.0122	IJ	PCI/G
16 A	09/27/19	Europium 152	0.0045	0.0071	0.0120	<u> </u>	PCI/G
16 A	09/27/10	Europium-154	-0.0291	0.0213	0.0555	U	PCI/G
16 A	09/27/19	Europium-155	0.00031	0.0251	0.04	U U	PCI/G
16 A	00/27/10	Holmium 166m	0.0413	0.0550	0.0031	U	PCI/C
10 A	09/27/19	Lead 210	0.0040	0.0111	0.02	U 111	PCI/C
10 A	09/27/19	Lead-210	0	4.42	5.55	UI	PCI/G
10 A	09/27/19	Lead-212	0.977	0.029	0.0231		PCI/G
16 A	09/27/19	Lead-214	1.93	0.053	0.0902	**	PCI/G
16 A	09/27/19	Neptunium-239	0.0214	0.0839	0.147	U	PCI/G
16 A	09/27/19	Niobium-94	0	0.0149	0.012	UI	PCI/G
16 A	09/27/19	Potassium-40	18.4	0.385	0.0992		PCI/G
16 A	09/27/19	Promethium-147	123	236	413	U	PCI/G
16 A	09/27/19	Protactinium-231	0	0.178	0.175	UI	PCI/G
16 A	09/27/19	Radium-226	1.68	0.0479	0.0224		PCI/G
16 A	09/27/19	Radium-228	1.03	0.074	0.0428		PCI/G
16 A	09/27/19	Sodium-22	-0.00227	0.00904	0.0144	U	PCI/G
16 A	09/27/19	Tellurium-125m	-1.11	4.89	8.5	U	PCI/G
16 A	09/27/19	Thallium-208	0.322	0.0188	0.0125		PCI/G
16 A	09/27/19	Thorium-231	0.0609	0.163	0.248	U	PCI/G
16 A	09/27/19	Thorium-234	1.2	0.834	1.16		PCI/G
16 A	09/27/19	Thulium-171	-2.79	12.2	21.5	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I abl	e B-I. Complete R	lesults from	the GEL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
16 A	09/27/19	Tin-126	0	0.0483	0.0464	UI	PCI/G
16 A	09/29/19	Iodine-129	-0.0745	0.416	0.694	U	PCI/G
16 A	10/01/19	Polonium-210	0.96	0.276	0.116		PCI/G
16 A	09/30/19	Thorium-228	0.936	0.171	0.137		PCI/G
16 A	09/30/19	Thorium-229	0.07	0.0738	0.117	U	PCI/G
16 A	09/30/19	Thorium-230	1.71	0.208	0.0782		PCI/G
16 A	09/30/19	Thorium-232	0.861	0.149	0.07		PCI/G
16 A	09/28/19	Uranium-232	-0.00341	0.0428	0.0813	U	PCI/G
16 A	09/28/19	Uranium-233/234	1.09	0.123	0.0553		PCI/G
16 A	09/28/19	Uranium-235/236	0.244	0.0605	0.0422		PCI/G
16 A	09/28/19	Uranium-238	1.23	0.131	0.0553		PCI/G
16 A	10/01/19	Neptunium-236	-0.00101	0.00481	0.0117	U	PCI/G
16 A	10/01/19	Plutonium-236	-0.00101	0.00481	0.0117	U	PCI/G
16 A	10/01/19	Plutonium-239/240	0.000934	0.00757	0.0153	U	PCI/G
16 A	10/01/19	Plutonium-242	-0.00675	0.0102	0.0253	U	PCI/G
16 A	10/01/19	Plutonium-244	0.00385	0.00681	0.00578	U	PCI/G
16 A	10/01/19	Neptunium-237	0.00575	0.0114	0.0186	U	PCI/G
16 A	10/04/19	Plutonium-241	0.834	1.9	3.25	U	PCI/G
16 A	09/30/19	Iron-55	-0.728	2.93	4.38	U	PCI/G
16 A	09/28/19	Nickel-63	0.061	0.451	0.773	Ū	PCI/G
16 A	09/25/19	Technetium-99	0.231	0.433	0.73	U	PCI/G
16 A	09/27/19	Tritium	-1.8	2.36	4.56	Ū	PCI/G
16 A	09/27/19	Carbon-14	-1.06	1.68	3	U	PCI/G
16 A	09/30/19	Nickel-59	0.452	1.00	1 97	U	PCI/G
16 A	10/05/19	Strontium-90	0.00209	0.00844	0.0149	U	PCI/G
16 A	10/05/19	Yttrium-90	0.00209	0.00844	0.0149	U	PCI/G
16 A	10/06/19	Americium-241	0.00205	0.017	0.0311	U	PCI/G
16 A	10/06/19	Americium-243	0.00678	0.0194	0.0346	U	PCI/G
16 A	10/06/19	Curium-243/244	0.0023	0.00782	0.00691	U	PCI/G
16 A	10/06/19	Curium-245/246	0.0029	0.00945	0.00091	U	PCI/G
16 R	09/30/19	Nickel-59	-0.267	0.00945	1.2	<u> </u>	PCI/G
16 B	09/27/19	Actinium-225	-1.11	1 72	2 75	<u> </u>	PCI/G
16 B	09/27/19	Actinium-227	0.00645	0.0599	0.0888	<u> </u>	PCI/G
16 B	09/27/19	Actinium-228	0.00043	0.0577	0.0386	0	PCI/G
16 B	09/27/19	Antimony-125	0.00246	0.0051	0.0291	IJ	PCI/G
16 B	09/27/19	Barium-137m	0.00240	0.0100	0.00291	0	PCI/G
16 B	09/27/19	Bismuth-212	1.06	0.00979	0.138		PCI/G
16 B	09/27/19	Bismuth-213	0.0003	0.185	0.0317	IJ	PCI/G
16 B	09/27/19	Bismuth-214	1.53	0.0101	0.0517	0	PCI/G
16 B	09/27/19	Cesium-134	1.55	0.0410	0.015	III	PCI/G
16 B	09/27/19	Cesium-137	0.0586	0.0123	0.010	01	PCI/G
16 B	09/27/19	Cobalt-60	0.0030	0.0103	0.0115	U	PCI/G
16 B	09/27/19	Europium-152	0.00112	0.00042	0.0310	U	PCI/G
16 B	09/27/19	Europium-154	0.00473	0.018	0.0319	U	PCI/G
16 B	09/27/19	Furopium-155	0.0312	0.0257	0.0375	U	PCI/G
16 B	09/27/19	Holmium-166m	0.00677	0.0431	0.0455	U	PCI/G
16 B	09/27/19	Lead-210	0.00077	3.01	3.0173	U	PCI/G
16 B	09/27/19	Lead-212	0 056	0.0261	0.0108	01	PCI/G
16 B	09/27/19	Lead-212	1 76	0.0201	0.0130		PCI/G
16 B	09/27/19	Nentunium_730	_0.0828	0.0440	0.0255	Ī	PCI/G
16 B	09/27/10	Niohium-04	0.0628	0.007	0.109	U	PCI/G
16 B	09/27/10	Potassium 40	18 1	0.00534	0.00973	U	PCI/G
16 B	09/27/10	Promethium 147	62.5	105	272	I	PCI/G
10 D	09/27/10	Drotactinium 221	-05.5	0 107	0 152	U 111	PCI/G
10 D	09/27/19	Padium 226	1.52	0.19/	0.132	UI	PCI/G
10 D	09/27/19	Radium 220	1.33	0.0410	0.019		PCI/C
10 D	09/27/19	Sodium 22	0.922	0.0051	0.0380	I	PCI/G
10 D	09/2//19	Tollurium 125m	0.011	0.00852	0.0142	U	
10 D 16 D	09/27/19	Thellium 200	1.08	4.19	0.0107	U	PCI/G
10 D	09/27/19	Thomas 221	0.281	0.0149	0.010/	TT	PCI/G
100	109/2//19	1 1 00F1UID=7.31	0.0432	0.151	0.21	U	TPU/U

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
16 B	09/27/19	Thorium-234	1.03	0.63	0.753		PCI/G
16 B	09/27/19	Thulium-171	-0.207	8.43	14.5	U	PCI/G
16 B	09/27/19	Tin-126	0	0.0326	0.0327	UI	PCI/G
16 B	09/29/19	Iodine-129	-0.128	0.306	0.56	U	PCI/G
16 B	10/03/19	Polonium-210	0.977	0.274	0.181	_	PCI/G
16 B	09/30/19	Thorium-228	0.896	0.148	0.107		PCI/G
16 B	09/30/19	Thorium-229	0.0622	0.0557	0.0838	IJ	PCI/G
16 B	09/30/19	Thorium 220	1.63	0.0337	0.0604	0	PCI/G
10 D	09/30/19	Thomas 222	0.722	0.165	0.0094		
10 B	09/30/19		0.722	0.121	0.0393	TT	PCI/G
10 B	09/28/19	Uranium-232	0.00979	0.0532	0.0957	U	PCI/G
16 B	09/28/19	Uranium-233/234	1.05	0.122	0.04/3		PCI/G
16 B	09/28/19	Uranium-235/236	0.113	0.0428	0.0339		PCI/G
16 B	09/28/19	Uranium-238	1.28	0.133	0.0391		PCI/G
16 B	10/01/19	Neptunium-236	0	0.0047	0.00642	U	PCI/G
16 B	10/01/19	Plutonium-236	0	0.0047	0.00642	U	PCI/G
16 B	10/01/19	Plutonium-239/240	0.00515	0.00859	0.0121	U	PCI/G
16 B	10/01/19	Plutonium-242	-0.000179	0.015	0.0302	U	PCI/G
16 B	10/01/19	Plutonium-244	-0.00208	0.00538	0.0146	U	PCI/G
16 B	10/01/19	Neptunium-237	-0.0055	0.00951	0.027	U	PCI/G
16 B	10/04/19	Plutonium-241	0.182	1.76	3.04	U	PCI/G
16 B	09/30/19	Iron-55	-0.191	2.78	4.06	U	PCI/G
16 B	09/28/19	Nickel-63	-0.0248	0.409	0.704	U	PCI/G
16 B	09/25/19	Technetium-99	0.143	0.415	0.701	Ū	PCI/G
16 B	09/27/19	Tritium	-0.865	2 29	4 28	<u> </u>	PCI/G
16 B	09/27/19	Carbon 14	-0.805	1.73	2.07	<u> </u>	PCI/G
10 D	09/27/19	Violatel 50	0.373	0.250	0.104	U	
10 B	10/05/10		-0.204	0.239	0.194	<u> </u>	PCI/G
16 B	10/05/19	Strontium-90	0.00422	0.00847	0.0147	<u> </u>	PCI/G
16 B	10/05/19	Yttrium-90	0.00422	0.00847	0.0147	0	PCI/G
16 B	10/06/19	Americium-241	2.18E-09	0.0136	0.0264	U	PCI/G
16 B	10/06/19	Americium-243	-0.0163	0.0181	0.0388	U	PCI/G
16 B	10/06/19	Curium-243/244	-0.00162	0.00841	0.0179	U	PCI/G
16 B	10/06/19	Curium-245/246	0.00568	0.0083	0.00568	X	PCI/G
16 C	09/27/19	Actinium-225	-3.09	1.97	3.07	U	PCI/G
16 C	09/27/19	Actinium-227	0.0509	0.0695	0.101	U	PCI/G
16 C	09/27/19	Actinium-228	0.961	0.0751	0.0493		PCI/G
16 C	09/27/19	Antimony-125	0.0119	0.0195	0.0338	U	PCI/G
16 C	09/27/19	Barium-137m	0.0392	0.0124	0.0114		PCI/G
16 C	09/27/19	Bismuth-212	0.889	0.193	0.171		PCI/G
16 C	09/27/19	Bismuth-213	-0.00631	0.0217	0.0356	U	PCI/G
16 C	09/27/19	Bismuth-214	1.52	0.0444	0.0223	_	PCI/G
16 C	09/27/19	Cesium-134	0	0.0189	0.0165	Ш	PCI/G
16 C	09/27/19	Cesium-137	0.0414	0.0132	0.0103	01	PCI/G
16 C	00/27/10	Cobalt 60	0.0414	0.0132	0.012	I I	PCI/G
16 C	09/27/10	Europium 152	-0.004/3	0.00651	0.0136	 	PCI/G
10 C	09/27/19	Europium 154	-0.0123	0.0204	0.033		PCI/C
10 C	09/27/19	Europium-154	0.00061	0.0301	0.0401	U	PCI/G
16 C	09/27/19	Europium-155	0	0.0407	0.0489		PCI/G
16 C	09/27/19	Holmium-166m	-0.00183	0.0117	0.0204	U	PCI/G
16 C	09/27/19	Lead-210	0.575	3.29	5.95	U	PCI/G
16 C	09/27/19	Lead-212	0.989	0.0282	0.0222		PCI/G
16 C	09/27/19	Lead-214	1.82	0.0471	0.0897		PCI/G
16 C	09/27/19	Neptunium-239	-0.0354	0.0712	0.12	U	PCI/G
16 C	09/27/19	Niobium-94	0.0104	0.00669	0.0122	U	PCI/G
16 C	09/27/19	Potassium-40	18.1	0.403	0.113		PCI/G
16 C	09/27/19	Promethium-147	-174	204	342	U	PCI/G
16 C	09/27/19	Protactinium-231	0	0.145	0.17	UI	PCI/G
16 C	09/27/19	Radium-226	1.52	0.0444	0.0223		PCI/G
16 C	09/27/19	Radium-228	0.961	0.0751	0.0493		PCI/G
16 C	09/27/19	Sodium-22	0.000112	0.0108	0.0165	U	PCI/G
16 C	09/27/19	Tellurium_125m	0.000112	A 12	7 02	 	PCI/G
16 C	00/27/10	Thallium 200	0.936	0.0211	0.0115	0	PCI/G
16 C	09/27/10	Thorium 221	0.500	0.0211	0.0113	Τĭ	PCI/G
100	09/27/19	The minute 22.4	0.0039	0.15	0.233	U	PCI/G
10 C	09/2//19	1 norium-234	1.63	1.18	0.941		PUI/G

Table B-1. Complete Results from the GEL Laboratory

	I adi	e B-I. Complete R	esuits from	the GEL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
16 C	09/27/19	Thulium-171	7.67	12.1	21.9	U	PCI/G
16 C	09/27/19	Tin-126	0	0.0369	0.035	UI	PCI/G
16 C	09/29/19	Iodine-129	-0.0645	0.453	0.811	U	PCI/G
16 C	10/02/19	Polonium-210	0.988	0.301	0.243		PCI/G
16 C	09/30/19	Thorium-228	0.891	0.177	0.164		PCI/G
16 C	09/30/19	Thorium-229	-0.0653	0.0868	0.178	IJ	PCI/G
16 C	09/30/19	Thorium-230	1.57	0.213	0.145		PCI/G
16 C	09/30/19	Thorium-232	0.767	0.152	0.143		PCI/G
16 C	00/28/10	Lironium 222	0.152	0.132	0.12	I.I.	PCI/G
10 C	09/28/19	Uranium 222/224	-0.133	0.122	0.249	0	PCI/G
10 C	09/28/19	Uranium-235/234	1.08	0.123	0.0374		PCI/G
16 C	09/28/19	Uranium-235/250	0.225	0.0389	0.0394		PCI/G
16 C	09/28/19	Uranium-238	1.29	0.134	0.0341	**	PCI/G
16 C	10/01/19	Neptunium-236	-0.00114	0.0103	0.0226	<u> </u>	PCI/G
16 C	10/01/19	Plutonium-236	-0.00114	0.0103	0.0226	U	PCI/G
16 C	10/01/19	Plutonium-239/240	-0.00106	0.00702	0.0164	U	PCI/G
16 C	10/01/19	Plutonium-242	-0.0175	0.0126	0.034	U	PCI/G
16 C	10/01/19	Plutonium-244	-0.0000206	0.00671	0.0145	U	PCI/G
16 C	10/01/19	Neptunium-237	-0.00692	0.00973	0.0285	U	PCI/G
16 C	10/04/19	Plutonium-241	0.636	1.72	2.94	U	PCI/G
16 C	09/30/19	Iron-55	-2.37	2.77	4.18	U	PCI/G
16 C	09/28/19	Nickel-63	0.132	0.395	0.674	U	PCI/G
16 C	09/25/19	Technetium-99	0.511	0.423	0.707	U	PCI/G
16 C	09/27/19	Tritium	0.0122	2.21	3.99	U	PCI/G
16 C	09/27/19	Carbon-14	0 504	1.66	2.85	U	PCI/G
16 C	09/30/19	Nickel-59	-0.257	0.36	0.629	<u> </u>	PCI/G
16 C	10/08/19	Strontium-90	0.0133	0.00923	0.0147	U	PCI/G
16 C	10/08/19	Vttrium 90	0.0133	0.00923	0.0147	<u> </u>	PCI/G
16 C	10/06/19	A mariaium 241	0.0153	0.00723	0.0147	<u> </u>	PCI/G
10 C	10/06/19	Americium 241	0.0132	0.0128	0.0102	U	PCI/G
10 C	10/06/19	Curium 242/244	2 70E 10	0.0157	0.0303	U	
16 C	10/06/19	Curium-243/244	2.79E-10	0.00057	0.0128	<u> </u>	PCI/G
10 C	10/06/19	Curium-245/246	0.00/94	0.00953	0.00396	А	PCI/G
17 A	09/30/19	Polonium-210	0.417	0.16	0.145		PCI/G
17 A	10/05/19	Thorium-228	0.226	0.129	0.182		PCI/G
17 A	10/05/19	Thorium-229	0.0246	0.0532	0.0905	U	PCI/G
17 A	10/05/19	Thorium-230	0.506	0.136	0.1		PCI/G
17 A	10/05/19	Thorium-232	0.366	0.114	0.078		PCI/G
17 A	09/30/19	Uranium-232	-0.0463	0.0513	0.11	U	PCI/G
17 A	09/30/19	Uranium-233/234	0.298	0.0715	0.0485		PCI/G
17 A	09/30/19	Uranium-235/236	0.0198	0.0279	0.0437	U	PCI/G
17 A	09/30/19	Uranium-238	0.323	0.0716	0.0301		PCI/G
17 A	09/28/19	Neptunium-236	-0.00166	0.00609	0.0127	U	PCI/G
17 A	09/28/19	Plutonium-236	-0.00166	0.00609	0.0127	U	PCI/G
17 A	09/28/19	Plutonium-239/240	-0.0008	0.00647	0.0129	U	PCI/G
17 A	09/28/19	Plutonium-242	-0.00339	0.00665	0.0152	U	PCI/G
17 A	09/28/19	Plutonium-244	0.004	0.00471	0.00613	U	PCI/G
17 A	09/30/19	Neptunium-237	-0.00661	0.00825	0.0238	U	PCI/G
17 A	10/03/19	Plutonium-241	0.252	1.74	2.98	U	PCI/G
17 A	09/14/19	Actinium-225	-0.164	0.318	0.51	U	PCI/G
17 A	09/14/19	Actinium-227	0.0049	0.0231	0.0372	Ū	PCI/G
17 A	09/14/19	Actinium-228	0.389	0.029	0.0201	-	PCI/G
17 A	09/14/19	Antimony-125	0.00508	0.00678	0.012	IJ	PCI/G
17 4	09/14/19	Barium-137m	0.0507	0.00521	0.00474		PCI/G
17 A	09/14/19	Bismuth_212	0.0307	0.00321	0.0678		PCI/G
17 A	00/14/19	Dismuth 212	0.400	0.003	0.0028	ŢŢŢ	DCI/C
17 A	09/14/19	Dismuth 214	0 262	0.0118	0.0138	UI	PCI/C
1/A 17 A	09/14/19	Distiluti-214	0.302	0.0141	0.0080/	TTT	PCI/G
1/A	09/14/19	Cesium-134	0	0.00597	0.00676	UI	PCI/G
1 / A	09/14/19	Cesium-13/	0.0535	0.0055	0.00501		PCI/G
17 A	09/14/19	Cobalt-60	-0.00167	0.00397	0.00598	<u> </u>	PCI/G
17 A	09/14/19	Europium-152	0.000735	0.00737	0.013	U	PCI/G
17 A	09/14/19	Europium-154	0.000928	0.0118	0.0206	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
17 A	09/14/19	Europium-155	0.0139	0.0169	0.0187	U	PCI/G
17 A	09/14/19	Holmium-166m	0.00197	0.00476	0.00812	U	PCI/G
17 A	09/14/19	Lead-210	0	1.3	1.35	UI	PCI/G
17 A	09/14/19	Lead-212	0.387	0.0104	0.00825		PCI/G
17 A	09/14/19	Lead-214	0.412	0.0149	0.0246		PCI/G
17 A	09/14/19	Neptunium-239	-0.0000417	0.0277	0.0459	U	PCI/G
17 A	09/14/19	Niobium-94	0.00315	0.00259	0.00452	U	PCI/G
17 A	09/14/19	Potassium-40	23.9	0.238	0.0347		PCI/G
17 A	09/14/19	Promethium-147	-33.2	77.9	129	U	PCI/G
17 A	09/14/19	Protactinium-231	0	0.0686	0.0634	UI	PCI/G
17 A	09/14/19	Radium-226	0.362	0.0141	0.00867		PCI/G
17 A	09/14/19	Radium-228	0.389	0.029	0.0201		PCI/G
17 A	09/14/19	Sodium-22	0.000378	0.00423	0.00737	IJ	PCI/G
17 A	09/14/19	Tellurium-125m	0.000378	1.5	2 32	<u> </u>	PCI/G
17 A	00/14/19	Thallium 208	0.126	0.00777	0.00/30	0	PCI/G
17 A	09/14/19	Thorium 231	0.120	0.00777	0.00439	ΤŢ	PCI/G
17 A	09/14/19	Thomas 224	-0.0107	0.0555	0.0873	0	PCI/G
17 A	09/14/19	Thulium 171	0.417	0.203	5.71	TT	PCI/G
1/A	09/14/19	Thunum-1/1	4.81	4.02	0.0124		PCI/G
1/A	09/14/19	11n-120	0 1((0.0155	0.0134		PCI/G
17 A	09/30/19	T 1 (00	-0.166	0.18	0.274	<u> </u>	PCI/G
1/A	09/25/19	1 ecnnetium-99	-0.345	0.297	0.0120	U	PCI/G
17 A	09/25/19	Strontium-90	-0.00266	0.00784	0.0139	0	PCI/G
17 A	09/25/19	Yttrium-90	-0.00266	0.00784	0.0139	<u> </u>	PCI/G
17 A	09/28/19	Nickel-63	0.127	0.298	0.505	U	PCI/G
17 A	09/28/19	Iron-55	2.28	2.3	3.22	U	PCI/G
17 A	09/28/19	Tritium	1.46	2.11	3.57	U	PCI/G
17 A	09/26/19	Carbon-14	0.126	1.41	2.45	U	PCI/G
17 A	09/27/19	Nickel-59	0.0566	0.339	0.775	U	PCI/G
17 A	10/03/19	Americium-241	-0.000119	0.0188	0.0399	U	PCI/G
17 A	10/03/19	Americium-243	0.00678	0.0256	0.0482	U	PCI/G
17 A	10/03/19	Curium-243/244	-0.012	0.016	0.0439	U	PCI/G
17 A	10/03/19	Curium-245/246	0	0.00895	0.0122	U	PCI/G
17 B	09/30/19	Polonium-210	0.378	0.144	0.092		PCI/G
17 B	09/29/19	Thorium-228	0.401	0.132	0.149		PCI/G
17 B	09/29/19	Thorium-229	-0.0347	0.0592	0.128	U	PCI/G
17 B	09/29/19	Thorium-230	0.353	0.106	0.0851		PCI/G
17 B	09/29/19	Thorium-232	0.393	0.109	0.0763		PCI/G
17 B	09/30/19	Uranium-232	0.0254	0.0536	0.0931	U	PCI/G
17 B	09/30/19	Uranium-233/234	0.329	0.0668	0.0471		PCI/G
17 B	09/30/19	Uranium-235/236	0.0278	0.0201	0.00926		PCI/G
17 B	09/30/19	Uranium-238	0.277	0.0609	0.0412		PCI/G
17 B	09/28/19	Neptunium-236	-0.00578	0.0107	0.0219	U	PCI/G
17 B	09/28/19	Plutonium-236	-0.00578	0.0107	0.0219	U	PCI/G
17 B	09/28/19	Plutonium-239/240	0.00093	0.0111	0.0206	Ū	PCI/G
17 B	09/28/19	Plutonium-242	0.00269	0,00646	0.0103	U	PCI/G
17 B	09/28/19	Plutonium-244	0.00186	0.00515	0.00891	U	PCI/G
17 B	09/30/19	Neptunium-237	0.0029	0.0113	0.0216	U	PCI/G
17 B	10/03/19	Plutonium-241	1 24	1 82	3.08	U	PCI/G
17 B	09/14/19	Actinium-225	_0 222	0 311	0 494	U	PCI/G
17 B	09/14/19	Actinium-223	_0.00843	0.0228	0.036	U	PCI/G
17 B	09/14/19	Actinium_227	0.00043	0.0228	0.050	0	PCI/G
17 B	09/14/10	Antimony_125	_0.0163	0.0515	0.02	I	PCI/G
17 B	00/14/10	Barium, 137m	0.00103	0.0008	0.0110	0	PCI/G
17 B	09/14/19	Barruth 212	0.0208	0.00439	0.00433		PCI/G
17 D	00/14/19	Dismuth 212	0.363	0.0736	0.0043	ΤT	PCI/C
17 D	09/14/19	Distiluti-213	0.0135	0.008/4	0.014	U	PCI/G
1/D	09/14/19	DISILIUM-214	0.348	0.0142	0.00825	TT	PCI/G
1/B	09/14/19	Cesium-154	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00703	0.00664	UI	PCI/G
1/B	09/14/19	Cestum-15/	0.0305	0.00485	0.004/8	ΤT	PCI/G
1/B	09/14/19	Cobalt-60	-0.000589	0.00397	0.00588	U	PCI/G
17 B	09/14/19	Europium-152	-0.00682	0.00733	0.0125	<u> </u>	PCI/G
17 B	09/14/19	Europium-154	-0.00223	0.0119	0.0201	U	PCI/G
17 B	09/14/19	Europium-155	0.0112	0.0109	0.0184	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I adi	e B-1. Complete	Results from	the GLL L	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
17 B	09/14/19	Holmium-166m	-0.00105	0.0047	0.00775	U	PCI/G
17 B	09/14/19	Lead-210	0.545	0.957	0.992	U	PCI/G
17 B	09/14/19	Lead-212	0.369	0.00987	0.00798		PCI/G
17 B	09/14/19	Lead-214	0.387	0.0149	0.00937		PCI/G
17 B	09/14/19	Neptunium-239	0.0126	0.0269	0.045	U	PCI/G
17 B	09/14/19	Niobium-94	0.00376	0.004	0.00449	U	PCI/G
17 B	09/14/19	Potassium-40	24.4	0.23	0.0349		PCI/G
17 B	09/14/19	Promethium_147	-13.6	75.9	126	IJ	PCI/G
17 B	09/14/19	Protectinium 231	15.0	0.0632	0.0632		PCI/G
17 D	09/14/19	Podium 226	0 248	0.0032	0.0032	01	PCI/G
17 D	09/14/19	Dadium 220	0.348	0.0142	0.00823		
17 D	09/14/19	Radium-226	0.572	0.0313	0.02	TT	PCI/G
17 D	09/14/19	50010III-22	-0.000892	0.00424	0.00718	<u> </u>	PCI/G
1/B	09/14/19	Tellurium-125m	0.232	1.34	2.23	U	PCI/G
1/B	09/14/19	Thallium-208	0.114	0.00701	0.00445	**	PCI/G
17 B	09/14/19	Thorium-231	-0.0108	0.0545	0.0851	<u> </u>	PCI/G
17 B	09/14/19	Thorium-234	0.182	0.295	0.27	U	PCI/G
17 B	09/14/19	Thulium-171	-2.13	2.66	4.54	U	PCI/G
17 B	09/14/19	Tin-126	0	0.0123	0.0126	UI	PCI/G
17 B	09/30/19	Iodine-129	-0.279	0.769	1.13	U	PCI/G
17 B	09/25/19	Technetium-99	-0.158	0.307	0.527	U	PCI/G
17 B	10/05/19	Strontium-90	-0.00289	0.00815	0.015	U	PCI/G
17 B	10/05/19	Yttrium-90	-0.00289	0.00815	0.015	U	PCI/G
17 B	09/28/19	Nickel-63	-0.0389	0.3	0.515	U	PCI/G
17 B	09/28/19	Iron-55	1.17	2.02	2.86	U	PCI/G
17 B	09/28/19	Tritium	1.09	2.12	3.62	U	PCI/G
17 B	09/26/19	Carbon-14	1.22	1.45	2.44	U	PCI/G
17 B	09/27/19	Nickel-59	0.657	0.801	1.19	U	PCI/G
17 B	10/03/19	Americium-241	0.00192	0.0215	0.0438	U	PCI/G
17 B	10/03/19	Americium-243	0.00305	0.0127	0.0234	U	PCI/G
17 B	10/03/19	Curium-243/244	-0.00419	0.0146	0.0359	U	PCI/G
17 B	10/03/19	Curium-245/246	0	0.00851	0.017	U	PCI/G
17 C	09/26/19	Technetium-99	0.166	0.306	0.516	U	PCI/G
17 C	09/30/19	Polonium-210	0.203	0.122	0.127	_	PCI/G
17 C	09/29/19	Thorium-228	0.311	0.119	0.141		PCI/G
17 C	09/29/19	Thorium-229	9 37E-09	0.0584	0.114	U	PCI/G
17 C	09/29/19	Thorium-230	0.4	0 114	0.094		PCI/G
17 C	09/29/19	Thorium-232	0 328	0.0978	0.0535		PCI/G
17 C	09/30/19	Uranium-232	-0.0283	0.0434	0.0933	U	PCI/G
17 C	09/30/19	Uranium-233/234	0.0203	0.0494	0.0525	0	PCI/G
17 C	09/30/19	Uranium-235/234	0.0128	0.0007	0.0323	II	PCI/G
17 C	09/30/19	Uranium 228	0.0128	0.0222	0.0327	0	PCI/G
17 C	09/30/19	Nontunium 226	0.010	0.0/4/	0.0408	I.I.	PCI/G
17 C	09/28/19	Plutonium 226	0.000890	0.0008	0.0129	<u> </u>	PCI/G
17 C	09/28/19	Plutonium 220/240	0.000890	0.0008	0.0129	U	
17 C	09/20/19	Dlutonium 242	0.00340	0.00/19	0.0124		PCI/G
17 C	09/28/19	Plutonium-242	0 00510	0.00588	0.00117	U 11	PCI/G
1/C	09/28/19	r lutonium-244	0.00518	0.00634	0.00956	U	PCI/G
17.0	09/30/19	Neptunium-23/	-0.00119	0.00902	0.0203	<u>U</u>	PCI/G
17 C	10/03/19	Plutonium-241	-0.337	1.61	2.79	<u> </u>	PCI/G
17 C	09/14/19	Actinium-225	0.000927	0.309	0.503	U	PCI/G
17 C	09/14/19	Actinium-227	0.00703	0.0229	0.0371	U	PCI/G
17 C	09/14/19	Actinium-228	0.407	0.0267	0.0197		PCI/G
17 C	09/14/19	Antimony-125	0.00773	0.01	0.012	U	PCI/G
17 C	09/14/19	Barium-137m	0.0236	0.00418	0.0043		PCI/G
17 C	09/14/19	Bismuth-212	0.343	0.0699	0.0627		PCI/G
17 C	09/14/19	Bismuth-213	0.00804	0.00842	0.0135	U	PCI/G
17 C	09/14/19	Bismuth-214	0.341	0.015	0.00824		PCI/G
17 C	09/14/19	Cesium-134	0	0.00334	0.00598	UI	PCI/G
17 C	09/14/19	Cesium-137	0.025	0.00441	0.00454		PCI/G
17 C	09/14/19	Cobalt-60	-0.000674	0.00337	0.0058	U	PCI/G
17 C	09/14/19	Europium-152	-0.00156	0.00714	0.0125	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
17 C	09/14/19	Europium-154	0.000929	0.0131	0.0199	U	PCI/G
17 C	09/14/19	Europium-155	0.0175	0.0144	0.0178	U	PCI/G
17 C	09/14/19	Holmium-166m	-0.0031	0.00443	0.00733	U	PCI/G
17 C	09/14/19	Lead-210	0.893	1.19	1.12	U	PCI/G
17 C	09/14/19	Lead-212	0.397	0.0105	0.00831		PCI/G
17 C	09/14/19	Lead-214	0.404	0.0142	0.00946		PCI/G
17 C	09/14/19	Neptunium-239	0.0116	0.0264	0.0447	U	PCI/G
17 C	09/14/19	Niohium-94	0.00136	0.00254	0.00433	<u>U</u>	PCI/G
17 C	09/14/19	Potassium-40	27	0.00234	0.00433	0	PCI/G
17 C	00/14/10	Promothium 147	19.9	74.7	125	T I	PCI/G
17 C	09/14/19	Protectinium 231	-10.8	0.0642	0.0624		PCI/G
17 C	09/14/19	Padium 226	0 241	0.0042	0.0024	01	PCI/G
170	09/14/19	Radium-220	0.341	0.013	0.00824		PCI/G
170	09/14/19	Radium-228	0.407	0.0267	0.0197	TT	PCI/G
170	09/14/19	Sodium-22	0.000165	0.00468	0.00/12	<u> </u>	PCI/G
17 C	09/14/19	Tellurium-125m	1.26	1.29	2.21	U	PCI/G
17 C	09/14/19	Thallium-208	0.112	0.00608	0.00433		PCI/G
17 C	09/14/19	Thorium-231	0.0731	0.0532	0.0872	U	PCI/G
17 C	09/14/19	Thorium-234	0	0.272	0.27	UI	PCI/G
17 C	09/14/19	Thulium-171	0.863	2.79	4.89	U	PCI/G
17 C	09/14/19	Tin-126	0	0.0136	0.0123	UI	PCI/G
17 C	09/30/19	Iodine-129	-0.0703	0.225	0.455	U	PCI/G
17 C	09/25/19	Technetium-99	-0.106	0.311	0.532	U	PCI/G
17 C	10/07/19	Strontium-90	0.00429	0.00837	0.0146	U	PCI/G
17 C	10/07/19	Yttrium-90	0.00429	0.00837	0.0146	U	PCI/G
17 C	09/28/19	Nickel-63	-0.0753	0.296	0.509	U	PCI/G
17 C	09/28/19	Iron-55	-0.166	2.13	3.09	U	PCI/G
17 C	09/28/19	Tritium	1.13	2.11	3.6	U	PCI/G
17 C	09/26/19	Carbon-14	-0.0546	1.39	2.43	Ū	PCI/G
17 C	09/27/19	Nickel-59	0.45	0.889	1.67	Ū	PCI/G
17 C	10/03/19	Americium-241	0.00628	0.0186	0.0337	U	PCI/G
17 C	10/03/19	Americium-243	-0.0142	0.0151	0.0337	<u> </u>	PCI/G
17 C	10/03/19	Curium-243/244	-0.0000838	0.0131	0.0366	<u> </u>	PCI/G
17 C	10/03/19	Curium 245/246	0.00206	0.0091	0.0300	<u> </u>	PCI/G
19 4	00/18/10	Actinium 225	-0.00200	0.00501	0.0237	<u> </u>	PCI/G
10 A	09/18/19	Actinium-223	-0.911	0.095	0.0676	U	PCI/G
10 A	09/18/19	Actinium-227	0.0333	0.0413	0.0076	0	PCI/G
18 A	09/18/19	Actinium-228	1.22	0.0522	0.0292	TT	PCI/G
18 A	09/18/19	Anumony-125	0.00807	0.0126	0.0221	U	PCI/G
18 A	09/18/19	Barium-13/m	0.0794	0.00///	0.00/49		PCI/G
18 A	09/18/19	Bismuth-212	1.34	0.131	0.105		PCI/G
18 A	09/18/19	Bismuth-213	0.0094	0.0152	0.024	U	PCI/G
18 A	09/18/19	Bismuth-214	1.79	0.0327	0.0145		PCI/G
18 A	09/18/19	Cesium-134	0	0.011	0.0127	UI	PCI/G
18 A	09/18/19	Cesium-137	0.0839	0.00821	0.00791		PCI/G
18 A	09/18/19	Cobalt-60	-0.00164	0.00489	0.00846	U	PCI/G
18 A	09/18/19	Europium-152	-0.00144	0.014	0.0234	U	PCI/G
18 A	09/18/19	Europium-154	0.000169	0.0161	0.0261	U	PCI/G
18 A	09/18/19	Europium-155	0	0.0301	0.0334	UI	PCI/G
18 A	09/18/19	Holmium-166m	0.00358	0.00767	0.0131	U	PCI/G
18 A	09/18/19	Lead-210	0.355	2.31	2.51	U	PCI/G
18 A	09/18/19	Lead-212	1.23	0.0207	0.0157		PCI/G
18 A	09/18/19	Lead-214	2.06	0.0347	0.0658		PCI/G
18 A	09/18/19	Neptunium-239	0	0.0738	0.0835	UI	PCI/G
18 A	09/18/19	Niobium-94	0	0.00645	0.00786	UI	PCI/G
18 A	09/18/19	Potassium-40	153	0 252	0.0699		PCI/G
18 A	09/18/19	Promethium-147		147	234	I.	PCI/G
18 4	09/18/19	Protactinium_721	-07.5	0.11	0.114		PCI/G
18 A	00/18/10	Padium 226	1 70	0.0227	0.114	01	PCI/G
10 A 18 A	09/10/19	Radium 220	1./9	0.0527	0.0143		PCI/G
10 A	09/16/19	Radium-228	1.22	0.0522	0.0292	ΤT	PCI/G
18 A	09/18/19	Sodium-22	0.000281	0.00576	0.00938	U	PCI/G
18 A	09/18/19	Tellurium-125m	0	2.89	4.21	UI	PCI/G
18 A	09/18/19	Thallium-208	0.369	0.0141	0.00784		PCI/G
18 A	09/18/19	Thorium-231	-0.0801	0.102	0.158	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	Tabl	e B-1. Complete R	esults from	the GEL La	aborator	У	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
18 A	09/18/19	Thorium-234	1.19	0.497	0.586		PCI/G
18 A	09/18/19	Thulium-171	5.47	8.22	11	U	PCI/G
18 A	09/18/19	Tin-126	0	0.0247	0.0237	UI	PCI/G
18 A	10/03/19	Polonium-210	1.25	0.301	0.19		PCI/G
18 A	10/03/19	Thorium-228	0.883	0.158	0.108		PCI/G
18 A	10/03/19	Thorium-229	0.0368	0.048	0.0754	U	PCI/G
18 A	10/03/19	Thorium-230	1.86	0.215	0.0936		PCI/G
18 A	10/03/19	Thorium-232	0.914	0.149	0.0584		PCI/G
18 A	10/01/19	Uranium-232	0.0143	0.0429	0.0771	U	PCI/G
18 A	10/01/19	Uranium-233/234	0.929	0.114	0.0393		PCI/G
18 A	10/01/19	Uranium-235/236	0.0428	0.0313	0.0394		PCI/G
18 A	10/01/19	Uranium-238	0.846	0.11	0.0476		PCI/G
18 A	10/01/19	Neptunium-236	-0.00176	0.00455	0.0123	U	PCI/G
18 A	10/01/19	Plutonium-236	-0.00176	0.00455	0.0123	U	PCI/G
18 A	10/01/19	Plutonium-239/240	0.00669	0.00948	0.0147	U	PCI/G
18 A	10/01/19	Plutonium-242	0.00527	0.0103	0.0168	U	PCI/G
18 A	10/01/19	Plutonium-244	0.000832	0.00522	0.00987	U	PCI/G
18 A	10/05/19	Americium-241	0.00932	0.0132	0.0205	U	PCI/G
18 A	10/05/19	Americium-243	0.0112	0.0139	0.0217	U	PCI/G
18 A	10/05/19	Curium-243/244	-0.0000464	0.00941	0.0203	U	PCI/G
18 A	10/05/19	Curium-245/246	0	0.00522	0.00714	U	PCI/G
18 A	10/02/19	Neptunium-237	-0.000824	0.00545	0.0127	U	PCI/G
18 A	10/05/19	Plutonium-241	-0.49	1.64	2.85	U	PCI/G
18 A	09/26/19	Nickel-63	0.146	0.429	0.732	U	PCI/G
18 A	09/28/19	Iodine-129	-0.246	0.613	1.04	U	PCI/G
18 A	09/26/19	Iron-55	0.872	2.71	3.9	U	PCI/G
18 A	09/24/19	Technetium-99	-0.0394	0.322	0.55	U	PCI/G
18 A	09/26/19	Tritium	-1.8	2.33	4.44	U	PCI/G
18 A	09/28/19	Carbon-14	-0.482	1.46	2.6	U	PCI/G
18 A	09/26/19	Nickel-59	-0.0682	1.33	2.33	U	PCI/G
18 A	10/08/19	Strontium-90	0.012	0.00894	0.0147	U	PCI/G
18 A	10/08/19	Yttrium-90	0.012	0.00894	0.0147	U	PCI/G
18 B	09/18/19	Actinium-225	0.077	0.662	1.06	U	PCI/G
18 B	09/18/19	Actinium-227	0.0462	0.0523	0.0647	U	PCI/G
18 B	09/18/19	Actinium-228	1.24	0.0539	0.0278		PCI/G
18 B	09/18/19	Antimony-125	0.00532	0.0125	0.0215	U	PCI/G
18 B	09/18/19	Barium-137m	0.0828	0.00753	0.00713		PCI/G
18 B	09/18/19	Bismuth-212	1.24	0.152	0.0971		PCI/G
18 B	09/18/19	Bismuth-213	0.000476	0.0133	0.0227	U	PCI/G
18 B	09/18/19	Bismuth-214	1.76	0.0323	0.0137		PCI/G
18 B	09/18/19	Cesium-134	0	0.0111	0.0117	UI	PCI/G
18 B	09/18/19	Cesium-137	0.0875	0.00795	0.00754		PCI/G
18 B	09/18/19	Cobalt-60	-0.00145	0.00453	0.00766	U	PCI/G
18 B	09/18/19	Europium-152	-0.0131	0.013	0.0222	U	PCI/G
18 B	09/18/19	Europium-154	0.0121	0.0167	0.0258	U	PCI/G
18 B	09/18/19	Europium-155	0	0.0319	0.0318	UI	PCI/G
18 B	09/18/19	Holmium-166m	-0.00332	0.00759	0.0124	U	PCI/G
18 B	09/18/19	Lead-210	0.431	1.15	1.88	U	PCI/G
18 B	09/18/19	Lead-212	1.24	0.0201	0.0141		PCI/G
18 B	09/18/19	Lead-214	2.04	0.0346	0.0622		PCI/G
18 B	09/18/19	Neptunium-239	0	0.0622	0.0788	UI	PCI/G
18 B	09/18/19	Niobium-94	0	0.00603	0.00758	UI	PCI/G
18 B	09/18/19	Potassium-40	15.3	0.243	0.0672		PCI/G
18 B	09/18/19	Promethium-147	-3.65	134	222	U	PCI/G
18 B	09/18/19	Protactinium-231	0	0.117	0.115	UI	PCI/G
18 B	09/18/19	Radium-226	1.76	0.0323	0.0137		PCI/G
18 B	09/18/19	Radium-228	1.24	0.0539	0.0278		PCI/G
18 B	09/18/19	Sodium-22	0.00414	0.00599	0.00922	U	PCI/G
18 B	09/18/19	Tellurium-125m	2.86	3.19	3.92	U	PCI/G
18 B	09/18/19	Thallium-208	0.37	0.0134	0.00734		PCI/G

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
18 B	09/18/19	Thorium-231	0.0963	0.103	0.15	U	PCI/G
18 B	09/18/19	Thorium-234	1.65	0.53	0.492		PCI/G
18 B	09/18/19	Thulium-171	4.98	6.67	8.43	U	PCI/G
18 B	09/18/19	Tin-126	0	0.0229	0.0219	UI	PCI/G
18 B	10/02/19	Polonium-210	0.929	0.261	0.188		PCI/G
18 B	10/02/19	Thorium-228	0.82	0.162	0.121		PCI/G
18 B	10/02/19	Thorium-229	0.02	0.0707	0.121	U	PCI/G
10 D	10/02/19	Thorium 230	1.82	0.0707	0.064	0	PCI/G
10 D	10/02/19	Thorium 232	0.772	0.218	0.004		PCI/G
10 D	10/02/19		0.772	0.149	0.0939	TT	PCI/G
18 B	10/01/19	Uranium-232	-0.0315	0.0488	0.0996	U	PCI/G
18 B	10/01/19	Uranium-233/234	0.924	0.117	0.0558		PCI/G
18 B	10/01/19	Uranium-235/236	0.0549	0.0358	0.045		PCI/G
18 B	10/01/19	Uranium-238	0.901	0.115	0.0489		PCI/G
18 B	10/01/19	Neptunium-236	0.000849	0.00533	0.0101	U	PCI/G
18 B	10/01/19	Plutonium-236	0.000849	0.00533	0.0101	U	PCI/G
18 B	10/01/19	Plutonium-239/240	0.00162	0.00744	0.0144	U	PCI/G
18 B	10/01/19	Plutonium-242	-0.00498	0.00642	0.0178	U	PCI/G
18 B	10/01/19	Plutonium-244	0.000818	0.00513	0.00969	U	PCI/G
18 B	10/02/19	Americium-241	-0.00223	0.00775	0.0191	U	PCI/G
18 B	10/02/19	Americium-243	-0.00423	0.0126	0.0281	U	PCI/G
18 B	10/02/19	Curium-243/244	0.00324	0.00795	0.0127	U	PCI/G
18 B	10/02/19	Curium-245/246	-0.0012	0.00572	0.0139	Ū	PCI/G
18 B	10/02/19	Neptunium-237	-0.00995	0.00827	0.0239	U	PCI/G
18 B	10/05/19	Plutonium-241	_1 18	1 66	2 0	U	PCI/G
10 D	00/26/10	Niekel 62	0.118	0.41	0.7	U	PCI/G
10 D	09/20/19	Interet-05	0.118	0.41	0.7		
10 D	09/28/19	Iodine-129	0 22	0.300	0.409		PCI/G
18 B	09/26/19	Iron-55	-0.22	2.63	3.81	<u>U</u>	PCI/G
18 B	09/24/19	Technetium-99	0.0127	0.328	0.558	0	PCI/G
18 B	09/30/19	Tritium	1.91	2.18	3.66	U	PCI/G
18 B	09/28/19	Carbon-14	-1.02	1.44	2.6	U	PCI/G
18 B	09/26/19	Nickel-59	-0.244	0.981	1.72	U	PCI/G
18 B	10/07/19	Strontium-90	0.00911	0.0085	0.0141	U	PCI/G
18 B	10/07/19	Yttrium-90	0.00911	0.0085	0.0141	U	PCI/G
18 C	09/24/19	Actinium-225	0.658	1.56	2.69	U	PCI/G
18 C	09/24/19	Actinium-227	-0.00484	0.0742	0.113	U	PCI/G
18 C	09/24/19	Actinium-228	1.26	0.0746	0.0456		PCI/G
18 C	09/24/19	Antimony-125	0	0.0256	0.0374	UI	PCI/G
18 C	09/24/19	Barium-137m	0.0786	0.0127	0.0119		PCI/G
18 C	09/24/19	Bismuth-212	1.46	0.255	0.158		PCI/G
18 C	09/24/19	Bismuth-213	-0.0000433	0.0232	0.0392	U	PCI/G
18 C	09/24/19	Bismuth-214	1 88	0.057	0.0246		PCI/G
18 C	09/24/19	Cesium-134	1.00	0.057	0.0102	IП	PCI/G
10 C	00/24/19	Cosium 127	0 002	0.010	0.0193	01	PCL/G
10 C	09/24/19	Cobalt 60	0.005	0.0134	0.0120	I.I.	PCI/G
10 C	09/24/19	Europium 152	-0.000000	0.00708	0.0124		PCI/G
10 C	09/24/19	Europium-152	-0.0180	0.0231	0.0385	U	PCI/G
18 C	09/24/19	Europium-154	-0.00718	0.0226	0.0375	U	PCI/G
18 C	09/24/19	Europium-155	0	0.0518	0.0657	UI	PCI/G
18 C	09/24/19	Holmium-166m	-0.0107	0.0114	0.0197	U	PCI/G
18 C	09/24/19	Lead-210	0	4.22	3.56	UI	PCI/G
18 C	09/24/19	Lead-212	1.16	0.0342	0.0254		PCI/G
18 C	09/24/19	Lead-214	2.17	0.0568	0.1		PCI/G
18 C	09/24/19	Neptunium-239	-0.0143	0.0951	0.158	U	PCI/G
18 C	09/24/19	Niobium-94	0.00764	0.00691	0.0127	U	PCI/G
18 C	09/24/19	Potassium-40	14.2	0.374	0.104		PCI/G
18 C	09/24/19	Promethium-147	-163	253	437	U	PCI/G
18 C	09/24/19	Protactinium-231	0	0.17	0 189	<u> </u>	PCI/G
18 C	09/24/19	Radium-226	1 89	0.057	0.0246		PCI/G
18 C	09/24/10	Radium-220	1.00	0.037	0.0240		PCI/G
10 C	00/24/19	Sodium 22	0.00290	0.0740	0.0430	τī	DCU/C
180	09/24/19	50010m-22	-0.00289	0.00808	0.0134	U	PCI/G
18 C	09/24/19	Tellurium-125m	3.53	6.88	8.52	U	PCI/G
18 C	09/24/19	Thallium-208	0.374	0.0247	0.0129		PCI/G
18 C	09/24/19	Thorium-231	-0.0668	0.178	0.264	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	1 adı	e B-I. Complete R	esuits from	the GEL La	iborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
18 C	09/24/19	Thorium-234	1.63	1.24	1.24		PCI/G
18 C	09/24/19	Thulium-171	-7.14	13.5	22.7	U	PCI/G
18 C	09/24/19	Tin-126	0	0.0524	0.0494	UI	PCI/G
18 C	10/03/19	Polonium-210	0.992	0.272	0.209		PCI/G
18 C	10/03/19	Thorium-228	0.786	0.204	0.194		PCI/G
18 C	10/03/19	Thorium-229	-0.0493	0.127	0.25	IJ	PCI/G
18 C	10/03/19	Thorium-230	2.12	0.127	0.188	0	PCI/G
18 C	10/03/19	Thorium 232	0.864	0.221	0.100		PCI/G
10 C	10/03/19		0.004	0.221	0.239		
10 C	10/01/19		0.0833	0.0327	0.0741		PCI/G
180	10/01/19	Uranium-233/234	0.948	0.112	0.0408	* *	PCI/G
18 C	10/01/19	Uranium-235/236	0.0432	0.0326	0.0446	0	PCI/G
18 C	10/01/19	Uranium-238	0.905	0.11	0.0507		PCI/G
18 C	10/03/19	Neptunium-236	-0.00249	0.00541	0.0141	U	PCI/G
18 C	10/03/19	Plutonium-236	-0.00249	0.00541	0.0141	U	PCI/G
18 C	10/03/19	Plutonium-239/240	-0.00506	0.00872	0.0211	U	PCI/G
18 C	10/03/19	Plutonium-242	0.00344	0.0143	0.0275	U	PCI/G
18 C	10/03/19	Plutonium-244	0.000466	0.00569	0.0111	U	PCI/G
18 C	10/02/19	Americium-241	-0.000936	0.00843	0.0185	U	PCI/G
18 C	10/02/19	Americium-243	0.00386	0.0115	0.0208	U	PCI/G
18 C	10/02/19	Curium-243/244	0.00431	0.00834	0.0138	U	PCI/G
18 C	10/02/19	Curium-245/246	0	0.00716	0.0143	U	PCI/G
18 C	10/03/19	Neptunium-237	-0.00426	0.0079	0.0215	Ū	PCI/G
18 C	10/05/19	Plutonium-241	0.00120	2.02	3 45	<u> </u>	PCI/G
18 C	00/26/10	Nickel 63	0.45	0.425	0.712	<u> </u>	PCI/G
18 C	09/20/19	Lodino 120	0.411	0.423	0.712	<u> </u>	PCI/G
10 C	09/26/19	Iodile-129	0.293	0.572	2.40	U	PCI/G
180	09/20/19	T 1 (00	0.372	2.42	3.49	<u> </u>	PCI/G
18 C	09/24/19	Technetium-99	0.154	0.335	0.566	0	PCI/G
18 C	09/27/19	Tritium	-0.793	2.5	4.6	<u> </u>	PCI/G
18 C	09/28/19	Carbon-14	-0.492	1.5	2.66	0	PCI/G
18 C	09/26/19	Nickel-59	-0.654	1.35	2.35	U	PCI/G
18 C	10/07/19	Strontium-90	0.00754	0.00842	0.0141	U	PCI/G
18 C	10/07/19	Yttrium-90	0.00754	0.00842	0.0141	U	PCI/G
2 A	10/03/19	Polonium-210	0.891	0.222	0.0424		PCI/G
2 A	10/03/19	Thorium-228	1.18	0.234	0.186		PCI/G
2 A	10/03/19	Thorium-229	-0.0567	0.0641	0.153	U	PCI/G
2 A	10/03/19	Thorium-230	1.14	0.213	0.126		PCI/G
2 A	10/03/19	Thorium-232	1.59	0.242	0.0719		PCI/G
2 A	10/01/19	Uranium-232	-0.0233	0.06	0.118	U	PCI/G
2 A	10/01/19	Uranium-233/234	1.02	0.123	0.0458		PCI/G
2 A	10/01/19	Uranium-235/236	0.071	0.0408	0.0501		PCI/G
2 A	10/01/19	Uranium-238	0.92	0.117	0.0412		PCI/G
2 A	10/01/19	Neptunium-236	-0.00599	0.00579	0.0179	U	PCI/G
2 A	10/01/19	Plutonium-236	-0.00599	0.00579	0.0179	U	PCI/G
2 A	10/01/19	Plutonium_230/240	_0 00333	0.00379	0.019	U	PCI/G
2 4	10/01/19	Plutonium-242	_0.00333	0.00730	0.0101	U	PCI/G
2 4	10/01/19	Plutonium 244	0.00800	0.0143	0.0334	U	PCI/G
2 1	10/01/19	Nontunium 227	0.000808	0.00307	0.00938	U	DCI/C
	10/02/19	Distonium 241	-0.00352	0.00778	0.0192		PCI/G
2 A	10/00/19	riutonium-241	-1.0/	1.63	2.86	U	PCI/G
2 A	09/25/19	Actinium-225	-1.53	1.62	2.59	<u> </u>	PCI/G
2 A	09/25/19	Actinium-227	0.0444	0.061	0.0924	U	PCI/G
2 A	09/25/19	Actinium-228	1.71	0.0751	0.0373		PCI/G
2 A	09/25/19	Antimony-125	0.000315	0.019	0.0304	U	PCI/G
2 A	09/25/19	Barium-137m	0.0575	0.0106	0.0108		PCI/G
2 A	09/25/19	Bismuth-212	1.83	0.194	0.147		PCI/G
2 A	09/25/19	Bismuth-213	0.0242	0.0284	0.0325	U	PCI/G
2 A	09/25/19	Bismuth-214	1.29	0.04	0.0201		PCI/G
2 A	09/25/19	Cesium-134	0	0.0152	0.0189	UI	PCI/G
2 A	09/25/19	Cesium-137	0.0608	0.0112	0.0114		PCI/G
2 A	09/25/19	Cobalt-60	-0.000308	0.00637	0.0114	U	PCI/G
2 A	09/25/19	Europium-152	-0.00365	0.0181	0.0319	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
2 A	09/25/19	Europium-154	0.00229	0.022	0.0369	U	PCI/G
2 A	09/25/19	Europium-155	0	0.048	0.048	UI	PCI/G
2 A	09/25/19	Holmium-166m	-0.0023	0.0108	0.0185	U	PCI/G
2 A	09/25/19	Lead-210	1.02	1.98	2.38	U	PCI/G
2 A	09/25/19	Lead-212	1.69	0.032	0.0212		PCI/G
2 A	09/25/19	Lead-214	1.54	0.0458	0.0779		PCI/G
2 A	09/25/19	Nentunium-239	0	0.0150	0.0772	UI II	PCI/G
2 A	09/25/19	Niobium-94	0.00253	0.00598	0.0104	U	PCI/G
$\frac{2}{2}$ A	09/25/19	Potassium-40	22.4	0.00390	0.0104	0	PCI/G
$\frac{2}{2}$ A	09/25/19	Promethium-147	-76.7	205	330	II	PCI/G
$\frac{2 \Lambda}{2 \Lambda}$	09/25/19	Protectinium-231	-70.7	0.171	0 164		PCI/G
$\frac{2}{2}$	00/25/10	Padium 226	1 20	0.171	0.104	01	PCI/G
$\frac{2 A}{2 A}$	09/25/19	Radium 220	1.29	0.04	0.0201		PCI/G
2 A	09/25/19	Kadium-226	0.000504	0.0731	0.0575	TT	PCI/G
2 A	09/23/19	50dium-22	-0.000394	0.00/98	0.0133	<u> </u>	PCI/G
2 A	09/25/19	Tellurium-125m	6.46	5.93	0.52	U	PCI/G
2 A	09/25/19	Thallium-208	0.521	0.0203	0.0109	••	PCI/G
2 A	09/25/19	Thorium-231	-0.0909	0.137	0.215	U	PCI/G
2 A	09/25/19	Thorium-234	1.51	0.699	0.756		PCI/G
2 A	09/25/19	Thulium-171	-4.7	7.69	11.9	U	PCI/G
2 A	09/25/19	Tin-126	0	0.0342	0.0339	UI	PCI/G
2 A	09/28/19	Iodine-129	-0.256	0.411	0.685	U	PCI/G
2 A	09/26/19	Iron-55	0.396	2.85	4.36	U	PCI/G
2 A	09/26/19	Nickel-63	-0.00601	0.471	0.809	U	PCI/G
2 A	09/25/19	Technetium-99	-0.0689	0.33	0.563	U	PCI/G
2 A	09/27/19	Tritium	0.428	2.59	4.6	U	PCI/G
2 A	09/28/19	Carbon-14	-1.71	1.42	2.64	U	PCI/G
2 A	10/03/19	Strontium-90	-0.00132	0.00845	0.0149	U	PCI/G
2 A	10/03/19	Yttrium-90	-0.00132	0.00845	0.0149	U	PCI/G
2 A	10/02/19	Nickel-59	-0.289	1.32	2.33	U	PCI/G
2 A	10/05/19	Americium-241	0.0131	0.016	0.0241	U	PCI/G
2 A	10/05/19	Americium-243	0.00579	0.0217	0.0394	U	PCI/G
2 A	10/05/19	Curium-243/244	0	0.006	0.00649	U	PCI/G
2 A	10/05/19	Curium-245/246	7.47E-10	0.0108	0.0215	U	PCI/G
2 B	09/27/19	Tritium	-1	2.38	4.47	U	PCI/G
2 B	09/27/19	Tritium	91.7	17.7	8.38		%
2 B	10/03/19	Polonium-210	0.775	0.205	0.0415		PCI/G
2 B	10/03/19	Thorium-228	1.28	0.233	0.203		PCI/G
2 B	10/03/19	Thorium-229	-0.146	0.0983	0.203	IJ	PCI/G
2 B	10/03/19	Thorium-230	0.140	0.0905	0.221	0	PCI/G
2 D 2 B	10/03/19	Thorium 232	1.17	0.100	0.10		PCI/G
2 B	10/01/10	Uranium_232	_0.0640	0.200	0.149	I	PCI/G
2 B	10/01/19	Uranium 222/224	-0.0049	0.0500	0.117	U	PCI/G
2 D 2 D	10/01/19	Uranium 225/234	0.00/	0.113	0.0443		PCI/G
	10/01/19	Uranium 229	0.0344	0.0341	0.0401		PCI/G
$\frac{2 \text{ D}}{2 \text{ P}}$	10/01/19	Nontunium 226	0.922	0.114	0.0277	ΤT	PCI/G
	10/01/19	Distantian 220	-0.0116	0.00897	0.0248	U 11	PCI/G
2 B	10/01/19	Plutonium-236	-0.0116	0.0089/	0.0248	U	PCI/G
2 B	10/01/19	Plutonium-239/240	-0.00249	0.0109	0.0233	U	PCI/G
2 B	10/01/19	Plutonium-242	-0.00457	0.00669	0.0198	<u> </u>	PCI/G
2 B	10/01/19	Plutonium-244	0.00628	0.00802	0.0111	U	PCI/G
2 B	10/03/19	Neptunium-237	-0.0032	0.00966	0.0271	U	PCI/G
2 B	10/06/19	Plutonium-241	0.14	1.4	2.4	U	PCI/G
2 B	09/25/19	Actinium-225	0.112	1.64	2.91	U	PCI/G
2 B	09/25/19	Actinium-227	0.0559	0.0819	0.106	U	PCI/G
2 B	09/25/19	Actinium-228	1.72	0.0943	0.0541		PCI/G
2 B	09/25/19	Antimony-125	0.0196	0.0218	0.0382	U	PCI/G
2 B	09/25/19	Barium-137m	0.068	0.0141	0.0144		PCI/G
2 B	09/25/19	Bismuth-212	2.06	0.255	0.199		PCI/G
2 B	09/25/19	Bismuth-213	0.0207	0.0245	0.0428	U	PCI/G
2 B	09/25/19	Bismuth-214	1.36	0.0507	0.0271		PCI/G
2 B	09/25/19	Cesium-134	0	0.0183	0.0241	UI	PCI/G
2 B	09/25/19	Cesium-137	0.0718	0.0149	0.0153		PCI/G
2 B	09/25/19	Cobalt-60	-0.00618	0.01	0.0143	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	Iabl	e B-I. Complete R	esuits from	the GEL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
2 B	09/25/19	Europium-152	-0.0265	0.0225	0.0379	U	PCI/G
2 B	09/25/19	Europium-154	0.0271	0.03	0.0535	U	PCI/G
2 B	09/25/19	Europium-155	0	0.0444	0.0453	UI	PCI/G
2 B	09/25/19	Holmium-166m	-0.0023	0.0139	0.0246	U	PCI/G
2 B	09/25/19	Lead-210	1.24	0.321	0.296		PCI/G
2 B	09/25/19	Lead-212	1.21	0.0336	0.023		PCI/G
2 B 2 B	09/25/19	Lead 214	1.07	0.0528	0.0803		PCI/G
2 B 2 P	09/25/19	Nontunium 220	0.0572	0.0328	0.0893	I.I.	PCI/G
2 D	09/25/19	Nichieur 04	0.0372	0.0704	0.116	U	PCI/G
2 D	09/25/19	Niobium-94	0.00///	0.00793	0.0143	0	PCI/G
2 B	09/25/19	Potassium-40	20.6	0.463	0.112		PCI/G
2 B	09/25/19	Promethium-147	99	203	337	U	PCI/G
2 B	09/25/19	Protactinium-231	0	0.192	0.188	UI	PCI/G
2 B	09/25/19	Radium-226	1.36	0.0507	0.0271		PCI/G
2 B	09/25/19	Radium-228	1.72	0.0943	0.0541		PCI/G
2 B	09/25/19	Sodium-22	0.00821	0.0109	0.0193	U	PCI/G
2 B	09/25/19	Tellurium-125m	3.97	4.27	6.54	U	PCI/G
2 B	09/25/19	Thallium-208	0.528	0.024	0.014		PCI/G
2 B	09/25/19	Thorium-231	-0.0217	0.165	0.256	U	PCI/G
2 B	09/25/19	Thorium-234	1.42	0.34	0.354		PCI/G
2 B	09/25/19	Thulium-171	2.7	2.58	2.88	IJ	PCI/G
2 B	09/25/19	Tin_126	0	0.028	0.0275	<u> </u>	PCI/G
2 D	00/28/10	Ladina 120	0.0225	0.020	0.0273	U	
2 D	09/26/19	Iodine-129	0.0333	2.01	0.391	U	PCI/G
2 B	09/26/19	1ron-55	-0.205	2.91	4.5	<u> </u>	PCI/G
2 B	09/26/19	Nickel-63	-0.0/21	0.382	0.658	<u>U</u>	PCI/G
2 B	09/25/19	Technetium-99	-0.175	0.317	0.545	U	PCI/G
2 B	09/26/19	Tritium	0.347	2.27	4	U	PCI/G
2 B	09/28/19	Carbon-14	-0.952	1.42	2.56	U	PCI/G
2 B	09/28/19	Strontium-90	0.00628	0.00853	0.0144	U	PCI/G
2 B	09/28/19	Yttrium-90	0.00628	0.00853	0.0144	U	PCI/G
2 B	10/02/19	Nickel-59	-0.759	0.892	1.41	U	PCI/G
2 B	10/07/19	Americium-241	0.0149	0.0126	0.0142		PCI/G
2 B	10/07/19	Americium-243	-0.0197	0.0219	0.047	U	PCI/G
2 B	10/07/19	Curium-243/244	0.00184	0.00626	0.00553	U	PCI/G
2 B	10/07/19	Curium-245/246	0.00229	0.00778	0.00687	U	PCI/G
2 C	10/03/19	Polonium-210	0.554	0.177	0.145	_	PCI/G
2 C	09/30/19	Thorium-228	1 24	0.225	0.174		PCI/G
$\frac{2}{2}$ C	09/30/19	Thorium-229	0.0254	0.0229	0.137	IJ	PCI/G
$\frac{2C}{2C}$	00/30/10	Thorium 220	0.0234	0.0755	0.0033	0	PCI/G
20	09/30/19	Thomas 222	1.14	0.173	0.0953		
$\frac{2C}{2C}$	09/30/19	Line in 222	1.14	0.193	0.0232	TT	PCI/G
20	09/28/19		0.0236	0.0733	0.13	U	PCI/G
20	09/28/19	Uranium-233/234	0.896	0.114	0.0612		PCI/G
2 C	09/28/19	Uranium-235/236	0.104	0.0451	0.0499		PCI/G
2 C	09/28/19	Uranium-238	1.03	0.119	0.0425		PCI/G
2 C	10/01/19	Neptunium-236	-0.000023	0.00751	0.0162	U	PCI/G
2 C	10/01/19	Plutonium-236	-0.000023	0.00751	0.0162	U	PCI/G
2 C	10/01/19	Plutonium-239/240	-0.00224	0.00578	0.0157	U	PCI/G
2 C	10/01/19	Plutonium-242	0.00589	0.0105	0.0173	U	PCI/G
2 C	10/01/19	Plutonium-244	0.0011	0.00689	0.013	U	PCI/G
2 C	10/01/19	Neptunium-237	-0.00874	0.00844	0.0296	U	PCI/G
2 C	10/04/19	Plutonium-241	0.155	2.15	3.7	U	PCI/G
2 C	09/26/19	Actinium-225	-1.12	2.1	3.57	U	PCI/G
2 C	09/26/19	Actinium-227	0.0541	0.0692	0.12	U	PCI/G
2.C	09/26/19	Actinium-228	1 76	0.0968	0.0537	~	PCI/G
$\frac{2}{2}$ C	09/26/19	Antimony_125	0.00552	0.0235	0.0308	I	PCI/G
$\frac{2C}{2C}$	09/26/19	Barium-137m	0.00332	0.0233	0.0398	U	PCI/G
20	00/26/10	Biemuth 212	1 47	0.0147	0.014		DCL/C
$\frac{2}{2}$ C	09/20/19	Dismuth 212	1.0/	0.204	0.190	τī	
20	09/20/19	Dismuin-213	-0.005	0.0256	0.0428	U	PCI/G
20	09/26/19	Bismuth-214	1.43	0.0588	0.0261		PCI/G
2 C	09/26/19	Cesium-134	0	0.0196	0.0237	UI	PCI/G
2 C	09/26/19	Cesium-137	0.0469	0.0156	0.0148		PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
2 C	09/26/19	Cobalt-60	0.00102	0.00884	0.0137	U	PCI/G
2 C	09/26/19	Europium-152	-0.0211	0.026	0.0412	U	PCI/G
2 C	09/26/19	Europium-154	-0.00953	0.0303	0.0453	U	PCI/G
2 C	09/26/19	Europium-155	0.0632	0.0418	0.0743	U	PCI/G
2 C	09/26/19	Holmium-166m	0.00911	0.0134	0.0243	U	PCI/G
2 C	09/26/19	Lead-210	2.43	3.96	5.42	U	PCI/G
2 C	09/26/19	Lead-212	1.73	0.0395	0.027		PCI/G
2 C	09/26/19	Lead-214	1.62	0.0621	0.0888		PCI/G
2 C	09/26/19	Neptunium-239	0.089	0.151	0.17	U	PCI/G
2 C	09/26/19	Niohium-94	0.00102	0.00733	0.0131	U	PCI/G
2 C	09/26/19	Potassium-40	22.5	0.00733	0.112		PCI/G
20	09/26/19	Promethium-147	-298	271	466	II	PCI/G
20	09/26/19	Protectinium 231	-270	0 203	0 206		PCI/G
20	09/26/19	Padium 226	1 /3	0.203	0.200	01	PCI/G
$\frac{2C}{2C}$	09/20/19	Radium 220	1.45	0.0388	0.0201		PCI/G
20	09/20/19	Radium-226	1.70	0.0908	0.0337	TT	PCI/G
20	09/26/19	Sodium-22	-0.00322	0.0109	0.0163	<u> </u>	PCI/G
20	09/26/19	Tellurium-125m	-3.46	5./1	9.89	0	PCI/G
20	09/26/19	Thallium-208	0.554	0.0269	0.0144	••	PCI/G
2 C	09/26/19	Thorium-231	-0.126	0.189	0.279	U	PCI/G
2 C	09/26/19	Thorium-234	2.36	1.66	1.35		PCI/G
2 C	09/26/19	Thulium-171	-9.29	14	24.5	U	PCI/G
2 C	09/26/19	Tin-126	0	0.0621	0.0531	UI	PCI/G
2 C	09/28/19	Iodine-129	0.0624	0.394	0.798	U	PCI/G
2 C	10/01/19	Polonium-210	0.763	0.25	0.208		PCI/G
2 C	09/29/19	Thorium-228	1.3	0.188	0.116		PCI/G
2 C	09/29/19	Thorium-229	0.0606	0.0557	0.0812	U	PCI/G
2 C	09/29/19	Thorium-230	0.925	0.157	0.107		PCI/G
2 C	09/29/19	Thorium-232	1.28	0.175	0.0577		PCI/G
2 C	09/28/19	Uranium-232	0.0351	0.0523	0.0886	U	PCI/G
2 C	09/28/19	Uranium-233/234	0.782	0.109	0.0468		PCI/G
2 C	09/28/19	Uranium-235/236	0.0725	0.0403	0.0469		PCI/G
2 C	09/28/19	Uranium-238	0.962	0.119	0.0291		PCI/G
2 C	09/30/19	Neptunium-236	0.00275	0.0124	0.0238	U	PCI/G
2 C	09/30/19	Plutonium-236	0.00275	0.0124	0.0238	U	PCI/G
2 C	09/30/19	Plutonium-239/240	-0.00287	0.0111	0.0245	U	PCI/G
2 C	09/30/19	Plutonium-242	0.000834	0.00809	0.0165	U	PCI/G
2 C	09/30/19	Plutonium-244	0.00275	0.00674	0.0108	U	PCI/G
2 C	10/01/19	Neptunium-237	0.00112	0.0134	0.0279	Ū	PCI/G
2 C	10/04/19	Plutonium-241	1 17	1 76	2.98	U	PCI/G
20	09/26/19	Iron-55	-0.738	2 57	3.93	U	PCI/G
$\frac{2}{2}$ C	09/26/19	Nickel-63	0.758	0.447	0.756	<u> </u>	PCI/G
20	09/25/19	Technetium-99	-0.0629	0.287	0.750	<u> </u>	PCI/G
$\frac{2}{2}$ C	09/26/19	Tritium	0.0029	2.03	3.6	<u> </u>	PCI/G
$\frac{2}{2}$ C	09/28/19	Carbon-14	-0.259	1 44	2 54	<u> </u>	PCI/G
20	09/28/19	Strontium-90	0.00637	0.0076	0.0128	<u> </u>	PCI/G
20	00/28/10	Vttrium 00	0.00637	0.0076	0.0128	<u> </u>	PCI/G
20	10/02/10	Nielral 50	1.17	1.10	1.02	U	PCI/G
20	10/02/19	Amonioium 241	-1.1/	0.0150	0.0278	U	PCI/G
20	10/05/19	Americium-241	0.00720	0.0139	0.0278	U	PCI/G
20	10/05/19	Americium-243	-0.00393	0.0102	0.0243	U	PCI/G
20	10/05/19	Curium-243/244	-0.0126	0.0137	0.0319	<u> </u>	PCI/G
20	10/05/19	Curium-245/246	0.0023	0.00779	0.00689	<u> </u>	PCI/G
3 A	09/26/19	Actinium-225	-0.0316	2.01	2.98	0	PCI/G
3 A	09/26/19	Actinium-22/	0.0693	0.0624	0.102	U	PCI/G
3 A	09/26/19	Actinium-228	1.71	0.0796	0.044		PCI/G
3 A	09/26/19	Antimony-125	0.00134	0.0192	0.0332	U	PCI/G
3 A	09/26/19	Barium-137m	0.1	0.012	0.0121		PCI/G
3 A	09/26/19	Bismuth-212	1.8	0.207	0.16		PCI/G
3 A	09/26/19	Bismuth-213	0.0154	0.0233	0.0366	U	PCI/G
3 A	09/26/19	Bismuth-214	1.45	0.0428	0.0231		PCI/G
3 A	09/26/19	Cesium-134	0	0.0164	0.0194	UI	PCI/G
3 A	09/26/19	Cesium-137	0.106	0.0126	0.0128		PCI/G
3 A	09/26/19	Cobalt-60	0.00108	0.00762	0.0132	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	Iabi	e B-I. Complete R	esults from	the GEL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
3 A	09/26/19	Europium-152	-0.00569	0.0204	0.0354	U	PCI/G
3 A	09/26/19	Europium-154	-0.00224	0.0257	0.0425	U	PCI/G
3 A	09/26/19	Europium-155	0	0.0458	0.0507	UI	PCI/G
3 A	09/26/19	Holmium-166m	0.0072	0.0118	0.0201	U	PCI/G
3 A	09/26/19	Lead-210	2.32	2.83	2.9	U	PCI/G
3 A	09/26/19	Lead-212	1.67	0.0329	0.0237		PCI/G
3 A	09/26/19	Lead-214	1.7	0.0453	0.0823		PCI/G
3 A	09/26/19	Neptunium-239	-0.0277	0.0755	0.125	U	PCI/G
3 A	09/26/19	Niobium-94	0.00325	0.00679	0.0115	Ū	PCI/G
3 A	09/26/19	Potassium-40	26.3	0.438	0 101	0	PCI/G
3 4	09/26/19	Promethium-147	-17	215	356	IJ	PCI/G
3 4	09/26/19	Protectinium_231		0 197	0 177		PCI/G
3 1	09/26/19	Padium 226	1.45	0.127	0.0231	01	PCI/G
3 A	09/26/19	Radium 228	1.45	0.0428	0.0231		PCI/G
2 A	09/20/19	Sadium 22	0.00064	0.0790	0.044	II	
3 A	09/20/19	Tallumium 125m	-0.00064	0.00924	0.0133	<u> </u>	PCI/G
3 A	09/20/19	Tellurium-123m	5.14	4.34	7.52	0	PCI/G
3 A	09/20/19	Thailium-208	0.51	0.0212	0.0118	TT	PCI/G
3 A	09/26/19	Thorium-231	0.0186	0.151	0.238	U	PCI/G
3 A	09/26/19	Thorium-234	2.07	0.743	0.777	••	PCI/G
3 A	09/26/19	Thulium-171	1.53	7.68	13.3	<u> </u>	PCI/G
3 A	09/26/19	Tin-126	0	0.0391	0.0358	UI	PCI/G
3 A	09/28/19	Iodine-129	-0.218	0.76	1.34	U	PCI/G
3 A	10/01/19	Polonium-210	1.75	0.298	0.102		PCI/G
3 A	09/30/19	Thorium-228	1.53	0.214	0.128		PCI/G
3 A	09/30/19	Thorium-229	0.0536	0.067	0.108	U	PCI/G
3 A	09/30/19	Thorium-230	1.24	0.183	0.0823		PCI/G
3 A	09/30/19	Thorium-232	1.32	0.187	0.0737		PCI/G
3 A	10/01/19	Uranium-232	-0.0473	0.0524	0.109	U	PCI/G
3 A	10/01/19	Uranium-233/234	1.17	0.132	0.0464		PCI/G
3 A	10/01/19	Uranium-235/236	0.0832	0.0419	0.0465		PCI/G
3 A	10/01/19	Uranium-238	1.19	0.132	0.0288		PCI/G
3 A	09/30/19	Neptunium-236	-0.0000264	0.0086	0.0186	U	PCI/G
3 A	09/30/19	Plutonium-236	-0.0000264	0.0086	0.0186	U	PCI/G
3 A	09/30/19	Plutonium-239/240	0.00118	0.0132	0.0269	U	PCI/G
3 A	09/30/19	Plutonium-242	-0.000911	0.00434	0.0106	U	PCI/G
3 A	09/30/19	Plutonium-244	0.00763	0.0103	0.00763	Х	PCI/G
3 A	10/01/19	Neptunium-237	0.00027	0.0124	0.0273	U	PCI/G
3 A	10/04/19	Plutonium-241	1.83	2.61	4.4	U	PCI/G
3 A	09/26/19	Iron-55	0.158	2.72	4.14	U	PCI/G
3 A	09/26/19	Nickel-63	-0.013	0.473	0.812	U	PCI/G
3 A	09/24/19	Technetium-99	0.379	0.427	0.717	U	PCI/G
3 A	09/27/19	Tritium	0.0247	2.16	3.84	U	PCI/G
3 A	09/27/19	Carbon-14	0.263	1.72	2.97	U	PCI/G
3 A	09/28/19	Strontium-90	0.0114	0.00735	0.012	U	PCI/G
3 A	09/28/19	Yttrium-90	0.0114	0.00735	0.012	U	PCI/G
3 A	10/02/19	Nickel-59	-0.434	0.452	0.707	Ū	PCI/G
3 A	10/05/19	Americium-241	0.00487	0.0139	0.0249	Ū	PCI/G
3 A	10/05/19	Americium-243	0.0114	0.0139	0.021	U	PCI/G
3 A	10/05/19	Curium-243/244	0.00161	0.0151	0.0285	U	PCI/G
3 A	10/05/19	Curium-245/246	0.00101	0.00611	0.00662	U	PCI/G
3 B	09/29/19	Iodine-129	0.0496	0.316	0.67	U	PCI/G
3 B	09/29/19	Iodine-129	Q2 /	2 61	0.07	0	%
3 B	10/01/19	Iron-55	-0.135	2.01	4 07	I	PCI/G
3 B	00/20/10	Nickel_63	-0.133	0.420	0.754	U	PCI/G
3 B	09/29/19	Actinium 225	1.00	0.439	1 50	U	PCI/G
2 D	00/26/10	Actinium 227	-1.09	2.//	4.36		
3 D 2 D	09/20/19	Actinium 229	0.01/	0.0917	0.154	U	PCI/G
3 D 2 D	09/20/19	Actimony 125	1.80	0.146	0.074	ΤT	PCI/G
3 8	09/20/19	Anumony-125	0.049	0.0559	0.0557	U	PCI/G
3 B	09/26/19	Barium-13/m	0.0479	0.0199	0.0213		PCI/G
3 B	09/26/19	Bismuth-212	1.86	0.453	0.283		PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
3 B	09/26/19	Bismuth-213	0.00224	0.034	0.0611	U	PCI/G
3 B	09/26/19	Bismuth-214	1.39	0.0758	0.0388		PCI/G
3 B	09/26/19	Cesium-134	0	0.0229	0.0325	UI	PCI/G
3 B	09/26/19	Cesium-137	0.0506	0.0211	0.0225		PCI/G
3 B	09/26/19	Cobalt-60	0.00699	0.0122	0.0223	IJ	PCI/G
3 B	09/26/19	Europium 152	0.000099	0.0365	0.0576	<u> </u>	PCI/G
<u>3 D</u>	09/20/19	Europium 154	0.0291	0.0303	0.0570	U	PCI/G
<u>3 D</u>	09/20/19		-0.00938	0.0448	0.0094		PCI/G
3 B	09/26/19	Europium-155	0	0.062	0.0634	UI	PCI/G
3 B	09/26/19	Holmium-166m	0.00574	0.0205	0.0362	U	PCI/G
3 B	09/26/19	Lead-210	1.62	0.602	0.447		PCI/G
3 B	09/26/19	Lead-212	1.73	0.0554	0.0348		PCI/G
3 B	09/26/19	Lead-214	1.62	0.082	0.135		PCI/G
3 B	09/26/19	Neptunium-239	-0.0541	0.0963	0.166	U	PCI/G
3 B	09/26/19	Niobium-94	0.00396	0.0122	0.0214	U	PCI/G
3 B	09/26/19	Potassium-40	26.4	0.745	0.18		PCI/G
3 B	09/26/19	Promethium-147	108	280	494	U	PCI/G
3 B	09/26/19	Protactinium-231	0	0.308	0.285	UI	PCI/G
3 B	09/26/19	Radium-226	1.39	0.0758	0.0388		PCI/G
3 B	09/26/19	Radium-228	1.86	0.146	0.074		PCI/G
3 B	09/26/19	Sodium-22	-0.00382	0.0161	0.0249	IJ	PCI/G
3 B	09/26/19	Tellurium-125m	4.08	5 29	9.43	U	PCI/G
2 D	09/26/19	Thellium 208	4.06	0.0270	0.0200	0	PCI/G
<u>3 D</u>	09/20/19	Thannum-208	0.550	0.0379	0.0209	TT	PCI/G
3 B	09/26/19	Thorium-231	0.0802	0.261	0.401	U	PCI/G
3 B	09/26/19	Thorium-234	1.55	0.573	0.483		PCI/G
3 B	09/26/19	Thulium-171	2.14	4.48	3.93	U	PCI/G
3 B	09/26/19	Tin-126	0	0.0488	0.0397	UI	PCI/G
3 B	09/28/19	Iodine-129	-0.282	0.45	0.687	U	PCI/G
3 B	10/01/19	Polonium-210	1.74	0.322	0.174		PCI/G
3 B	09/30/19	Thorium-228	1.47	0.22	0.134		PCI/G
3 B	09/30/19	Thorium-229	0.0441	0.0814	0.14	U	PCI/G
3 B	09/30/19	Thorium-230	1.3	0.194	0.0702		PCI/G
3 B	09/30/19	Thorium-232	1.25	0.195	0.105		PCI/G
3 B	09/28/19	Uranium-232	-0.031	0.0572	0.117	U	PCI/G
3 B	09/28/19	Uranium-233/234	1.39	0.14	0.0345		PCI/G
3 B	09/28/19	Uranium-235/236	0.0902	0.0381	0.0276		PCI/G
3 B	09/28/19	Uranium-238	1.5	0 145	0.0398		PCI/G
3 B	09/30/19	Nentunium-236	-0.00667	0.00906	0.0235	IJ	PCI/G
3 B	09/30/19	Plutonium 236	0.00667	0.00006	0.0235	<u> </u>	PCI/G
2 D	09/30/19	Plutonium 220/240	-0.00007	0.00900	0.0255	<u> </u>	PCI/G
<u>3 D</u>	09/30/19	Plasta minute 242	0.00238	0.0133	0.0233	U	PCI/G
3 B	09/30/19	Plutonium-242	-0.000187	0.00608	0.0132	<u> </u>	PCI/G
3 B	09/30/19	Plutonium-244	0.0108	0.0105	0.0128	0	PCI/G
3 B	10/01/19	Neptunium-237	-0.0029	0.00876	0.0246	U	PCI/G
3 B	10/04/19	Plutonium-241	-0.534	1.84	3.2	U	PCI/G
3 B	09/30/19	Iron-55	-1.51	3.3	4.99	U	PCI/G
3 B	09/28/19	Nickel-63	0.0836	0.436	0.745	U	PCI/G
3 B	09/24/19	Technetium-99	0.413	0.428	0.717	U	PCI/G
3 B	09/27/19	Tritium	-1.72	2.18	4.07	U	PCI/G
3 B	09/27/19	Carbon-14	-0.586	1.67	2.95	U	PCI/G
3 B	09/28/19	Nickel-59	-0.157	0.885	1.57	U	PCI/G
3 B	09/28/19	Strontium-90	0.013	0.00839	0.0138	U	PCI/G
3 B	09/28/19	Yttrium-90	0.013	0.00839	0.0138	U	PCI/G
3 B	10/05/19	Americium-241	0.0126	0.0191	0.031	U	PCI/G
3 B	10/05/19	Americium-243	0.00896	0.0206	0.0362	U	PCI/G
3 B	10/05/19	Curium-243/244	0,00998	0.0155	0.0230	U	PCI/G
3 B	10/05/19	Curium_245/246	0.00778	0.0135	0.0239	U	PCI/G
30	00/26/10	Actinium 225	0 205	1.0	2 12	U	DCL/C
	09/20/19	Actinium-225	0.383	1.8	3.13		PCI/G
30	09/26/19	Actinium-227	0.05	0.0877	0.104	U	PCI/G
3 C	09/26/19	Actinium-228	1.91	0.0729	0.0418		PCI/G
3 C	09/26/19	Antimony-125	0.00973	0.0203	0.0345	U	PCI/G
3 C	09/26/19	Barium-137m	0.0113	0.011	0.0118	U	PCI/G
3 C	09/26/19	Bismuth-212	1.81	0.209	0.165		PCI/G
3 C	09/26/19	Bismuth-213	0	0.0456	0.0351	UI	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	Tabl	le B-I. Complete I	Results from t	the GEL La	aborator	У	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
3 C	09/26/19	Bismuth-214	1.5	0.041	0.0231		PCI/G
3 C	09/26/19	Cesium-134	0	0.0173	0.0182	UI	PCI/G
3 C	09/26/19	Cesium-137	0.012	0.0116	0.0125	U	PCI/G
3 C	09/26/19	Cobalt-60	-0.00384	0.00835	0.0122	U	PCI/G
3 C	09/26/19	Europium-152	-0.00408	0.0212	0.0361	U	PCI/G
3 C	09/26/19	Europium-154	0.0118	0.0288	0.0406	U	PCI/G
3 C	09/26/19	Europium-155	0.0110	0.0200	0.0483	<u> </u>	PCI/G
30	09/26/19	Holmium-166m	-0.00966	0.0437	0.0483	<u> </u>	PCI/G
3 C	00/26/10	Logd 210	-0.00700	2.16	0.0203	<u> </u>	PCI/G
3 C	09/26/19	Lead 212	1.01	0.0221	0.023	0	
30	09/20/19	Leau-212	1.91	0.0321	0.023		
30	09/26/19	Neutronium 220	1.81	0.0447	0.0774	TT	PCI/G
30	09/26/19	Neptunium-239	-0.0515	0.0761	0.121	<u> </u>	PCI/G
30	09/26/19	Niobium-94	0.00844	0.012	0.0116	0	PCI/G
30	09/26/19	Potassium-40	28.1	0.398	0.0962	••	PCI/G
3 C	09/26/19	Promethium-147	-93.9	217	347	<u> </u>	PCI/G
3 C	09/26/19	Protactinium-231	0	0.162	0.177	UI	PCI/G
3 C	09/26/19	Radium-226	1.5	0.041	0.0231		PCI/G
3 C	09/26/19	Radium-228	1.91	0.0729	0.0418		PCI/G
3 C	09/26/19	Sodium-22	0.00445	0.0103	0.0146	U	PCI/G
3 C	09/26/19	Tellurium-125m	4.6	5.05	6.82	U	PCI/G
3 C	09/26/19	Thallium-208	0.577	0.0209	0.0116		PCI/G
3 C	09/26/19	Thorium-231	0.186	0.157	0.245	U	PCI/G
3 C	09/26/19	Thorium-234	2.09	0.69	0.671		PCI/G
3 C	09/26/19	Thulium-171	9.23	9.21	11.2	U	PCI/G
3 C	09/26/19	Tin-126	0	0.0317	0.0328	UI	PCI/G
3 C	09/28/19	Iodine-129	-0.0971	0.693	1.24	U	PCI/G
3 C	10/01/19	Polonium-210	1.3	0.319	0.0599		PCI/G
3 C	09/30/19	Thorium-228	1.43	0.19	0.0966		PCI/G
3 C	09/30/19	Thorium-229	0.0523	0.0693	0.115	U	PCI/G
3 C	09/30/19	Thorium-230	1.44	0.182	0.0641		PCI/G
3 C	09/30/19	Thorium-232	1.25	0.168	0.0442		PCI/G
3 C	09/28/19	Uranium-232	0.00919	0.0637	0.116	U	PCI/G
3 C	09/28/19	Uranium-233/234	1.69	0.167	0.0409		PCI/G
3 C	09/28/19	Uranium-235/236	0.18	0.0605	0.0527		PCI/G
3 C	09/28/19	Uranium-238	1.63	0.166	0.0572		PCI/G
3 C	09/30/19	Neptunium-236	-0.0118	0.00838	0.0265	U	PCI/G
3 C	09/30/19	Plutonium-236	-0.0118	0.00838	0.0265	U	PCI/G
3 C	09/30/19	Plutonium-239/240	-0.0114	0.0107	0.0289	U	PCI/G
3 C	09/30/19	Plutonium-242	-0.00534	0.0109	0.0261	U	PCI/G
3 C	09/30/19	Plutonium-244	0.0133	0.0117	0.012	X	PCI/G
3 C	10/01/19	Neptunium-237	-0.00492	0.00694	0.0227	U	PCI/G
3 C	10/04/19	Plutonium-241	1.08	2.03	3.46	Ū	PCI/G
3 C	10/01/19	Iron-55	-2.1	2.58	3.93	U	PCI/G
3 C	09/28/19	Nickel-63	-0.137	0.474	0.821	U	PCI/G
3 C	09/24/19	Technetium-99	0.406	0.466	0.783	Ū	PCI/G
3 C	09/27/19	Tritium	0.44	2 42	4 31	<u> </u>	PCI/G
3 C	09/27/19	Carbon-14	0.859	1.72	3.03	<u> </u>	PCI/G
3 C	09/28/19	Nickel-59	-0.548	1.02	1 76	<u> </u>	PCI/G
3 C	09/25/19	Strontium-90	0.01595	0.008	0.0136	<u> </u>	PCI/G
3 C	09/25/19	Vttrium-90	0.00595	0.008	0.0136	<u> </u>	PCI/G
30	10/05/19	Americium 241	0.00373	0.008	0.0130	<u> </u>	PCI/G
30	10/05/19	Americium 243	0.00212	0.0136	0.0204	U	PCI/G
30	10/05/19	Curium_243/244	_0.0037	0.0110	0.010	U	PCI/G
30	10/05/19	Curium 245/244	-0.0120	0.0195	0.0410	U	PCI/G
1 1	10/03/19	Actinium 225	0.00243	1.71	0.00729	U	PCI/G
	09/27/19	Actinium 227	-1.04	1./1	2./1		
+ A 4 A	09/2//19	Actinium 229	0.022	0.0003	0.0800	U	PCI/G
4 A	09/27/19	Actimum-228	1.4	0.0753	0.0393	Τī	PCI/G
4 A	09/2//19	Anumony-125	0.00644	0.0159	0.0276	U	PCI/G
	09/27/19	Darruni-13/III Dismuth 212	0.0301	0.00902	0.0101		
T A	107/21/17	DISHIUUI-ZIZ	1.34	0.198	0.141		

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
4 A	09/27/19	Bismuth-213	0.0123	0.0179	0.0313	U	PCI/G
4 A	09/27/19	Bismuth-214	1.06	0.0354	0.0187		PCI/G
4 A	09/27/19	Cesium-134	0	0.0132	0.0164	UI	PCI/G
4 A	09/27/19	Cesium-137	0.0593	0.0102	0.0106		PCI/G
4 A	09/27/19	Cobalt-60	-0.00422	0.00668	0.0112	IJ	PCI/G
4 4	09/27/19	Europium-152	0.00761	0.0172	0.0303	U	PCI/G
4 4	09/27/19	Europium-154	0.00701	0.0172	0.0303	<u> </u>	PCI/G
4 A	09/27/19	Europium 155	0.0123	0.0232	0.0387	U	PCI/G
4 A	09/27/19	Europium-155	0 00505	0.0398	0.0442		PCI/G
4 A	09/27/19	Holimum-100m	-0.00303	0.0103	0.0172		PCI/G
4 A	09/27/19	Lead-210	0	2.59	2.37	UI	PCI/G
4 A	09/27/19	Lead-212	1.36	0.0274	0.0193		PCI/G
4 A	09/27/19	Lead-214	1.22	0.0387	0.0218		PCI/G
4 A	09/27/19	Neptunium-239	0.0698	0.0856	0.109	U	PCI/G
4 A	09/27/19	Niobium-94	0.00438	0.00576	0.00982	U	PCI/G
4 A	09/27/19	Potassium-40	23.3	0.387	0.0812		PCI/G
4 A	09/27/19	Promethium-147	158	185	312	U	PCI/G
4 A	09/27/19	Protactinium-231	0	0.151	0.147	UI	PCI/G
4 A	09/27/19	Radium-226	1.06	0.0354	0.0187		PCI/G
4 A	09/27/19	Radium-228	1.4	0.0753	0.0393		PCI/G
4 A	09/27/19	Sodium-22	0.00444	0.00906	0.0139	U	PCI/G
4 A	09/27/19	Tellurium-125m	4.14	5.49	6.17	U	PCI/G
4 A	09/27/19	Thallium-208	0 415	0.0178	0.0103	5	PCI/G
4 A	09/27/19	Thorium-231	0.413	0 128	0 204	I	PCI/G
4 A	09/27/10	Thorium-234	1 12	0.120	0.204	0	PCI/G
4 4	09/27/19	Thulium 171	2.22	6.40	11.2	TT	
4 A	09/27/19	Thuhum-1/1	-2.23	0.49	0.0204		PCI/G
4 A	09/2//19	11n-120	0 712	0.0305	0.0304		PCI/G
4 A	09/26/19	Actinium-225	-0./12	1./2	2.92	<u> </u>	PCI/G
4 A	09/26/19	Actinium-22/	0.0022	0.0621	0.095	U	PCI/G
4 A	09/26/19	Actinium-228	1.42	0.0712	0.0421		PCI/G
4 A	09/26/19	Antimony-125	-0.00427	0.0189	0.0317	U	PCI/G
4 A	09/26/19	Barium-137m	0.0566	0.0113	0.0114		PCI/G
4 A	09/26/19	Bismuth-212	1.5	0.172	0.15		PCI/G
4 A	09/26/19	Bismuth-213	0.0318	0.0273	0.0333	U	PCI/G
4 A	09/26/19	Bismuth-214	1.03	0.0324	0.0212		PCI/G
4 A	09/26/19	Cesium-134	0	0.0141	0.0127	UI	PCI/G
4 A	09/26/19	Cesium-137	0.0598	0.012	0.012		PCI/G
4 A	09/26/19	Cobalt-60	0.00351	0.0065	0.0116	U	PCI/G
4 A	09/26/19	Europium-152	-0.0108	0.0209	0.0333	U	PCI/G
4 A	09/26/19	Europium-154	0.00674	0.0227	0.0369	U	PCI/G
4 A	09/26/19	Europium-155	0.0474	0.0357	0.0605	U	PCI/G
4 A	09/26/19	Holmium-166m	-0.00407	0.0106	0.0187	U	PCI/G
4 A	09/26/19	Lead-210	0	3 23	2.61	UI UI	PCI/G
4 4	09/26/19	Lead-212	12	0.0206	0.0218	01	PCI/G
	09/26/19	Lead-212	1.5	0.0220	0.0218		PCI/G
	09/26/19	Nentunium 220	-0.00554	0.0427	0.0231	11	PCI/G
	00/26/10	Nichium 04	-0.00554	0.0007	0.14	U	PCI/C
4 A	09/20/19	Determiner 40	0	0.00962	0.0112	UI	PCI/G
4 A	09/26/19	Potassium-40	22	0.381	0.0904	TT	PCI/G
4 A	09/26/19	Promethium-147	-142	227	391	U	PCI/G
4 A	09/26/19	Protactinium-231	0	0.185	0.17	UI	PCI/G
4 A	09/26/19	Radium-226	1.03	0.0324	0.0212		PCI/G
4 A	09/26/19	Radium-228	1.42	0.0712	0.0421		PCI/G
4 A	09/26/19	Sodium-22	0.00288	0.00817	0.0133	U	PCI/G
4 A	09/26/19	Tellurium-125m	5.99	7.11	8.13	U	PCI/G
4 A	09/26/19	Thallium-208	0.445	0.0199	0.0114		PCI/G
4 A	09/26/19	Thorium-231	-0.00201	0.149	0.224	U	PCI/G
4 A	09/26/19	Thorium-234	1.29	0.867	1.07		PCI/G
4 A	09/26/19	Thulium-171	-0.431	12.3	19.6	U	PCI/G
4 A	09/26/19	Tin-126	0	0.0455	0.0435	UI	PCI/G
4 A	09/29/19	Iodine-129	0.031	0.39	0.691	U	PCI/G
4 A	10/01/19	Polonium-210	1 32	0.255	0.0879	5	PCI/G
4 A	09/30/19	Thorium-228	1.32	0.175	0.11		PCI/G
4 4	09/30/10	Thorium-220	0.0107	0.175	0.122	Ιī	PCI/G
тл	07/30/17	1 HOI 14HI-227	0.0107	0.0005	0.122	0	101/0

Table B-1. Complete Results from the GEL Laboratory

	I ad	ie B-I. Complete R	esults from t	ine GEL La	borator	у	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
4 A	09/30/19	Thorium-230	0.849	0.137	0.0715		PCI/G
4 A	09/30/19	Thorium-232	1.12	0.157	0.0815		PCI/G
4 A	09/28/19	Uranium-232	0.0549	0.0459	0.07	U	PCI/G
4 A	09/28/19	Uranium-233/234	1.03	0.117	0.0376		PCI/G
4 A	09/28/19	Uranium-235/236	0.102	0.0412	0.0377		PCI/G
4 4	09/28/19	Uranium-238	0.102	0.0412	0.0377		PCI/G
4 4	10/01/10	Nontunium 226	0.00221	0.00897	0.0455	ŢŢ	PCI/G
4 A	10/01/19	Distantium 226	0.00231	0.00887	0.0105	U	
4 A	10/01/19	Plutonium-230	0.00231	0.00887	0.0103	<u> </u>	PCI/G
4 A	10/01/19	Plutonium-239/240	0.00603	0.0151	0.0271	<u> </u>	PCI/G
4 A	10/01/19	Plutonium-242	-0.00502	0.00///	0.0199	U	PCI/G
4 A	10/01/19	Plutonium-244	0.0135	0.0119	0.00674	<u>X</u>	PCI/G
4 A	10/01/19	Neptunium-237	-0.0011	0.0132	0.0297	U	PCI/G
4 A	10/04/19	Plutonium-241	0.763	1.98	3.37	U	PCI/G
4 A	09/30/19	Iron-55	-2.83	3.12	4.85	U	PCI/G
4 A	09/28/19	Nickel-63	-0.217	0.467	0.811	U	PCI/G
4 A	09/24/19	Technetium-99	0.101	0.464	0.786	U	PCI/G
4 A	09/27/19	Tritium	-1.63	2.25	4.33	U	PCI/G
4 A	09/27/19	Carbon-14	-1.09	1.68	3	U	PCI/G
4 A	09/28/19	Nickel-59	0.217	0.328	0.913	U	PCI/G
4 A	10/05/19	Strontium-90	0.0000923	0.00817	0.0147	U	PCI/G
4 A	10/05/19	Vttrium-90	0.0000923	0.00817	0.0147	U	PCI/G
4 4	10/05/19	Americium-241	-0.0124	0.00017	0.042	U	PCI/G
4 4	10/05/19	Americium-243	0.0124	0.0128	0.012	v	PCI/G
4 4	10/05/10	Curium 242/244	0.0103	0.0128	0.0135		PCI/G
4 A	10/05/19	Curium 245/244	-0.0123	0.0198	0.0433	U	PCI/G
4 A 4 D	10/03/19		0.00211	0.00/13	0.00052	U	PCI/G
4 B	09/26/19	Actinium-225	-0.927	1./5	2.8	<u> </u>	PCI/G
4 B	09/26/19	Actinium-227	-0.0223	0.0622	0.091	U	PCI/G
4 B	09/26/19	Actinium-228	1.5	0.0729	0.0444	~ ~ ~	PCI/G
4 B	09/26/19	Antimony-125	0.0164	0.025	0.0307	U	PCI/G
4 B	09/26/19	Barium-137m	0.0263	0.0081	0.0107		PCI/G
4 B	09/26/19	Bismuth-212	1.53	0.177	0.148		PCI/G
4 B	09/26/19	Bismuth-213	-0.00581	0.0188	0.0326	U	PCI/G
4 B	09/26/19	Bismuth-214	1.1	0.0409	0.02		PCI/G
4 B	09/26/19	Cesium-134	0	0.0147	0.0178	UI	PCI/G
4 B	09/26/19	Cesium-137	0.0278	0.00856	0.0113		PCI/G
4 B	09/26/19	Cobalt-60	8.61E-06	0.00662	0.0117	U	PCI/G
4 B	09/26/19	Europium-152	-0.00775	0.0179	0.0312	U	PCI/G
4 B	09/26/19	Europium-154	-0.0167	0.0229	0.0391	U	PCI/G
4 B	09/26/19	Europium-155	0	0.0433	0.0487	UI	PCI/G
4 B	09/26/19	Holmium-166m	-0.00478	0.0105	0.0176	U	PCI/G
4 B	09/26/19	Lead-210	-0.154	2.05	3.49	U	PCI/G
4 B	09/26/19	Lead-212	1.48	0.0289	0.0206		PCI/G
4 B	09/26/19	Lead-214	1.27	0.042	0.0706		PCI/G
4 B	09/26/19	Neptunium-239	0.109	0.0934	0.0700	U	PCI/G
4 B	09/26/19	Niohium-94	0.00972	0.0931	0.0108	U	PCI/G
4 B	09/26/19	Potassium-40	24.6	0.423	0.0100	0	PCI/G
4 D	00/26/10	Promothium 147	24.0	204	240	ŢŢ	PCI/G
4 D	09/26/19	Protostinium 221		0.170	0 157		PCI/G
4 D	09/20/19	Protactilitum-231	11	0.179	0.137	01	PCI/G
4 B	09/26/19	Radium-220	1.1	0.0409	0.02		PCI/G
4 B	09/20/19	Kadium-228	1.5	0.0729	0.0444	T T	PCI/G
4 B	09/26/19	Sodium-22	-0.00561	0.00823	0.0141	U	PCI/G
4 B	09/26/19	Tellurium-125m	2.85	4.41	6.87	U	PCI/G
4 B	09/26/19	Thallium-208	0.465	0.019	0.0106		PCI/G
4 B	09/26/19	Thorium-231	0.0204	0.136	0.216	U	PCI/G
4 B	09/26/19	Thorium-234	0.903	0.749	0.79		PCI/G
4 B	09/26/19	Thulium-171	-1.63	8.71	14.9	U	PCI/G
4 B	09/26/19	Tin-126	0	0.0311	0.0346	UI	PCI/G
4 B	09/29/19	Iodine-129	0.255	0.344	0.712	U	PCI/G
4 B	10/01/19	Polonium-210	0.934	0.237	0.0459		PCI/G
4 B	09/30/19	Thorium-228	1.31	0.193	0.11		PCI/G

Table B-1. Complete Results from the GEL Laboratory
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
4 B	09/30/19	Thorium-229	0.128	0.0689	0.079		PCI/G
4 B	09/30/19	Thorium-230	1.01	0.166	0.0981		PCI/G
4 B	09/30/19	Thorium-232	1.25	0.177	0.0612		PCI/G
4 B	09/28/19	Uranium-232	-0.0527	0.0484	0.105	U	PCI/G
4 B	09/28/19	Uranium-233/234	1.09	0 142	0.0695	0	PCI/G
4 B	09/28/19	Uranium-235/236	0.164	0.0605	0.056		PCI/G
4 D 4 B	09/28/19	Uranium 238	1.09	0.0005	0.050		PCI/G
4 D	10/01/10	Nantaniana 226	0.00428	0.141	0.0008	TT	PCI/G
4 D	10/01/19	Distantiana 226	0.00438	0.00941	0.0155	U	PCI/G
4 B	10/01/19	Plutonium-236	0.00438	0.00941	0.0155	<u> </u>	PCI/G
4 B	10/01/19	Plutonium-239/240	-0.00111	0.00884	0.02	<u> </u>	PCI/G
4 B	10/01/19	Plutonium-242	-0.00105	0.00948	0.0208	U	PCI/G
4 B	10/01/19	Plutonium-244	0.00422	0.00907	0.015	U	PCI/G
4 B	10/01/19	Neptunium-237	-0.00366	0.0104	0.0262	U	PCI/G
4 B	10/04/19	Plutonium-241	0.0399	1.65	2.86	U	PCI/G
4 B	09/30/19	Iron-55	-3.02	2.9	4.45	U	PCI/G
4 B	09/28/19	Nickel-63	-0.079	0.408	0.704	U	PCI/G
4 B	09/24/19	Technetium-99	0.493	0.407	0.681	U	PCI/G
4 B	09/27/19	Tritium	-1.22	2.28	4.32	U	PCI/G
4 B	09/27/19	Carbon-14	-0.0924	1.68	2.93	U	PCI/G
4 B	09/29/19	Nickel-59	0.213	0.868	1.61	Ū	PCI/G
4 B	10/03/19	Strontium-00	_0.00186	0.000	0.0146	U	PCI/G
4 B	10/03/19	Vttrium, 00	-0.00100	0.00042	0.0140	11	PCI/G
4 D	10/05/19	Amoriaisen 241	-0.00180	0.00042	0.0140	U 11	PCI/C
4 B	10/05/19	Americium-241	0.00844	0.00993	0.0129	U	PCI/G
4 B	10/05/19	Americium-243	0.006/3	0.0198	0.0354	0	PCI/G
4 B	10/05/19	Curium-243/244	0.00837	0.0118	0.0185	U	PCI/G
4 B	10/05/19	Curium-245/246	0.0117	0.0108	0.00586	X	PCI/G
4 C	09/26/19	Actinium-225	-0.214	2.02	2.65	U	PCI/G
4 C	09/26/19	Actinium-227	0.000144	0.053	0.0858	U	PCI/G
4 C	09/26/19	Actinium-228	1.6	0.0676	0.0359		PCI/G
4 C	09/26/19	Antimony-125	0.00293	0.0156	0.0273	U	PCI/G
4 C	09/26/19	Barium-137m	0.0118	0.0103	0.00941		PCI/G
4 C	09/26/19	Bismuth-212	1.59	0.188	0.131		PCI/G
4 C	09/26/19	Bismuth-213	0	0.0254	0.03	UI	PCI/G
4 C	09/26/19	Bismuth-214	1.12	0.0374	0.0179		PCI/G
4 C	09/26/19	Cesium-134	0	0.014	0.0157	UI	PCI/G
4 C	09/26/19	Cesium-137	0.0125	0.0109	0.00994	01	PCI/G
40	09/26/19	Cobalt 60	0.00452	0.0105	0.00774	TI	PCI/G
40	09/26/19	Euronium 152	-0.00432	0.00393	0.0101	<u> </u>	PCI/G
40	09/20/19	Europium-152	-0.012	0.017	0.0297	U	PCI/G
40	09/20/19	Europium-134	-0.000789	0.0217	0.0300		PCI/G
4 C	09/26/19	Europium-155	0	0.0499	0.0438		PCI/G
4 C	09/26/19	Holmium-166m	0.017	0.0128	0.0175	U	PCI/G
4 C	09/26/19	Lead-210	1.14	1.65	2.88	U	PCI/G
4 C	09/26/19	Lead-212	1.61	0.0297	0.0197		PCI/G
4 C	09/26/19	Lead-214	1.33	0.0409	0.0221		PCI/G
4 C	09/26/19	Neptunium-239	0.0944	0.0868	0.108	U	PCI/G
4 C	09/26/19	Niobium-94	0.00425	0.00539	0.00935	U	PCI/G
4 C	09/26/19	Potassium-40	24.5	0.394	0.079		PCI/G
4 C	09/26/19	Promethium-147	111	185	315	U	PCI/G
4 C	09/26/19	Protactinium-231	0	0.132	0.148	UI	PCI/G
4 C	09/26/19	Radium-226	1.12	0.0374	0.0179		PCI/G
4 C	09/26/19	Radium-228	1.6	0.0676	0.0359		PCI/G
4 C	09/26/19	Sodium-22	6.47E-06	0.00782	0.0132	I	PCI/G
4 C	09/26/10	Tellurium 125m	0.T/L-00 7.6	4 00	6.12	U	PCI/G
40	09/26/19	Thallium 209	0.467	0.0194	0.13	U	PCI/G
+ C	09/20/19	Thamum-200	0.40/	0.0100	0.00992	TT	DCL/C
40	09/20/19	1 norium-231	-0.0644	0.126	0.199	U	PCI/G
4 C	09/26/19	I norium-234	1.05	0.562	0.665	.	PCI/G
4 C	09/26/19	Thulium-171	10.7	10.6	12.1	U	PCI/G
4 C	09/26/19	Tin-126	0	0.0339	0.0301	UI	PCI/G
4 C	09/29/19	Iodine-129	0.062	0.674	1.21	U	PCI/G
4 C	10/01/19	Polonium-210	0.848	0.215	0.0417		PCI/G
4 C	09/30/19	Thorium-228	1.31	0.218	0.192		PCI/G
4 C	09/30/19	Thorium-229	0.0697	0.104	0.177	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I adi	e B-I. Complete	Results from	the GEL La	aborator	У	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
4 C	09/30/19	Thorium-230	1.06	0.181	0.128		PCI/G
4 C	09/30/19	Thorium-232	1.18	0.199	0.169		PCI/G
4 C	09/28/19	Uranium-232	-0.037	0.0352	0.0765	U	PCI/G
4 C	09/28/19	Uranium-233/234	0.929	0.108	0.0392		PCI/G
4 C	09/28/19	Uranium-235/236	0.125	0.0447	0.0428		PCI/G
4 C	09/28/19	Uranium-238	0.895	0.108	0.0488		PCI/G
40	10/01/19	Nentunium 236	0.00210	0.100	0.0187	ŢŢ	PCI/G
40	10/01/19	Plutonium 236	0.00219	0.00761	0.0187	<u> </u>	PCI/G
40	10/01/19	Distanium 220/240	-0.00219	0.00701	0.0187	U	
40	10/01/19	Plutomum-239/240	-0.00941	0.00911	0.0239	U	PCI/G
40	10/01/19	Plutonium-242	-0.00119	0.00949	0.0214	<u> </u>	PCI/G
4 C	10/01/19	Plutonium-244	-0.0000207	0.00673	0.0146	<u> </u>	PCI/G
4 C	10/01/19	Neptunium-237	-0.00232	0.0103	0.0268	U	PCI/G
4 C	10/04/19	Plutonium-241	0.196	1.8	3.11	U	PCI/G
4 C	09/30/19	Iron-55	-0.435	3.02	4.49	U	PCI/G
4 C	09/28/19	Nickel-63	0.209	0.437	0.743	U	PCI/G
4 C	09/25/19	Technetium-99	0.37	0.395	0.663	U	PCI/G
4 C	09/27/19	Tritium	-0.223	2.45	4.47	U	PCI/G
4 C	09/27/19	Carbon-14	-1.15	1.63	2.92	U	PCI/G
4 C	09/29/19	Nickel-59	0.374	1.22	2.24	U	PCI/G
4 C	09/26/19	Strontium-90	0.00113	0.00741	0.0128	U	PCI/G
4 C	09/26/19	Yttrium-90	0.00113	0.00741	0.0128	U	PCI/G
4 C	10/05/19	Americium-241	-0.00693	0.0127	0.028	U	PCI/G
4 C	10/05/19	Americium-243	-0.014	0.0174	0.0377	U	PCI/G
4 C	10/05/19	Curium-243/244	-0.00687	0.00952	0.023	U	PCI/G
4 C	10/05/19	Curium-245/246	3 38E-10	0.00795	0.025	<u> </u>	PCI/G
5 4	10/09/10	Strontium 00	0.0163	0.00795	0.0037	0	PCI/G
5 A	10/08/19	Vttriann 00	0.0103	0.00005	0.00937		
5 A	10/08/19	1 unum-90	0.0103	0.00003	0.00937	TT	PCI/G
5 A	09/27/19	Actinium-225	-1./3	2	3.48	<u> </u>	PCI/G
5 A	09/27/19	Actinium-227	0.0889	0.0952	0.114	U	PCI/G
5 A	09/27/19	Actinium-228	1.73	0.0823	0.0489		PCI/G
5 A	09/27/19	Antimony-125	0.00342	0.0204	0.0348	U	PCI/G
5 A	09/27/19	Barium-137m	0.29	0.0154	0.0124		PCI/G
5 A	09/27/19	Bismuth-212	1.86	0.22	0.168		PCI/G
5 A	09/27/19	Bismuth-213	0.0068	0.0239	0.0406	U	PCI/G
5 A	09/27/19	Bismuth-214	1.31	0.0394	0.024		PCI/G
5 A	09/27/19	Cesium-134	0	0.0167	0.0202	UI	PCI/G
5 A	09/27/19	Cesium-137	0.306	0.0163	0.013		PCI/G
5 A	09/27/19	Cobalt-60	-0.0028	0.00796	0.0133	U	PCI/G
5 A	09/27/19	Europium-152	0.00411	0.0247	0.038	U	PCI/G
5 A	09/27/19	Europium-154	-0.00805	0.0272	0.0454	U	PCI/G
5 A	09/27/19	Europium-155	0	0.0487	0.0546	UI	PCI/G
5 A	09/27/19	Holmium-166m	0.00762	0.0121	0.0217	U	PCI/G
5 A	09/27/19	Lead-210	4.22	3.67	4.4	U	PCI/G
5 A	09/27/19	Lead-212	1.75	0.0344	0.0248		PCI/G
5 A	09/27/19	Lead-214	1.51	0.0499	0.0806		PCI/G
5 4	09/27/19	Neptunium-239	0.0213	0.09	0.136	U	PCI/G
5 4	09/27/19	Niobium-94	0.00482	0.00697	0.0125	U	PCI/G
5 A	09/27/19	Potessium 40	25.6	0.00057	0.0125	0	PCI/G
5 4	09/27/19	Dromothium 147	25.0	220	202	TI	
5 A	09/27/19	Profileumum-14/	50.2	0.197	0 192	U	
5 A	09/27/19	Protactimum-251	0	0.187	0.188	01	PCI/G
J A	09/2//19	Radium-220	1.31	0.0394	0.024		PCI/G
5 A	09/27/19	Radium-228	1.73	0.0823	0.0489	••	PCI/G
5 A	09/27/19	Sodium-22	0.00122	0.00963	0.0163	U	PCI/G
5 A	09/27/19	Tellurium-125m	0	6.75	7.72	UI	PCI/G
5 A	09/27/19	Thallium-208	0.52	0.0218	0.0127		PCI/G
5 A	09/27/19	Thorium-231	0.0482	0.168	0.261	U	PCI/G
5 A	09/27/19	Thorium-234	2.11	1.03	0.899		PCI/G
5 A	09/27/19	Thulium-171	0.29	10.7	18.1	U	PCI/G
5 A	09/27/19	Tin-126	0	0.0457	0.0391	UI	PCI/G
5 A	09/29/19	Iodine-129	0.221	0.267	0.663	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
5 A	10/01/19	Polonium-210	1.58	0.307	0.147	-	PCI/G
5 A	10/02/19	Thorium-228	1.54	0.21	0.156		PCI/G
5 A	10/02/19	Thorium-229	2.68E-08	0.0874	0.162	U	PCI/G
5 A	10/02/19	Thorium-230	1.09	0.172	0.132		PCI/G
5 A	10/02/19	Thorium-232	1.3	0.181	0.109		PCI/G
5 A	09/28/19	Uranium-232	0.011	0.0447	0.081	U	PCI/G
5 A	09/28/19	Uranium-233/234	1.13	0.142	0.0809		PCI/G
5 A	09/28/19	Uranium-235/236	0.0849	0.0526	0.072		PCI/G
5 A	09/28/19	Uranium-238	0.961	0.13	0.0718		PCI/G
5 4	10/02/19	Neptunium-236	-0.00501	0.00619	0.0187	IJ	PCI/G
5 4	10/02/19	Plutonium-236	-0.00501	0.00619	0.0187	U	PCI/G
5 4	10/02/19	Plutonium-239/240	0.00201	0.00013	0.0202	U	PCI/G
5 4	10/02/19	Plutonium-242	-0.00666	0.0013	0.0202	<u> </u>	PCI/G
5 4	10/02/19	Plutonium-244	0.00574	0.00773	0.0234	v v	PCI/G
5 4	10/02/19	Nontunium 227	0.00374	0.00773	0.00374		PCI/G
5 A	10/01/19	Plutonium 241	0.00473	1.92	2.16	U	PCI/G
J A 5 A	10/04/19	Fiutomum-241	0.00003	2.22	3.10	U	PCI/G
5 A	09/30/19	Nullat (2	2.38	3.23	4./1	U	PCI/G
5 A	09/28/19	Nickel-03	0.14	0.430	0.743	<u> </u>	PCI/G
5 A	09/25/19	Technetium-99	0.0796	0.441	0.748	<u> </u>	PCI/G
5 A	09/27/19	I ritium	-0.954	2.39	4.47	<u> </u>	PCI/G
5 A	09/27/19	Carbon-14	-1.03	1.6	2.85	U	PCI/G
5 A	09/29/19	Nickel-59	0.214	0.381	0.981	<u> </u>	PCI/G
5 A	10/05/19	Americium-241	1.91E-09	0.014	0.0276	U	PCI/G
5 A	10/05/19	Americium-243	-0.0237	0.0217	0.047	U	PCI/G
5 A	10/05/19	Curium-243/244	0.00949	0.0144	0.0234	U	PCI/G
5 A	10/05/19	Curium-245/246	0.00635	0.0125	0.0203	U	PCI/G
5 A	10/08/19	Strontium-90	0.0248	0.00693	0.0103		PCI/G
5 A	10/08/19	Yttrium-90	0.0248	0.00693	0.0103		PCI/G
5 B	10/06/19	Americium-241	0.0018	0.0106	0.0199	U	PCI/G
5 B	10/06/19	Americium-243	0.00466	0.0133	0.0238	U	PCI/G
5 B	10/06/19	Curium-243/244	0.00358	0.00701	0.00536	U	PCI/G
5 B	10/06/19	Curium-245/246	0.00361	0.00867	0.0138	U	PCI/G
5 B	09/27/19	Actinium-225	0.0901	1.99	3.24	U	PCI/G
5 B	09/27/19	Actinium-227	0.06	0.0661	0.101	U	PCI/G
5 B	09/27/19	Actinium-228	1.99	0.0841	0.0401		PCI/G
5 B	09/27/19	Antimony-125	-0.00292	0.018	0.0312	U	PCI/G
5 B	09/27/19	Barium-137m	0.104	0.0116	0.0111		PCI/G
5 B	09/27/19	Bismuth-212	1.93	0.194	0.162		PCI/G
5 B	09/27/19	Bismuth-213	0.0221	0.0199	0.0355	U	PCI/G
5 B	09/27/19	Bismuth-214	1.33	0.0406	0.021		PCI/G
5 B	09/27/19	Cesium-134	0	0.0142	0.0185	UI	PCI/G
5 B	09/27/19	Cesium-137	0.109	0.0122	0.0117		PCI/G
5 B	09/27/19	Cobalt-60	0.0017	0.00714	0.0126	U	PCI/G
5 B	09/27/19	Europium-152	-0.00267	0.0197	0.0347	U	PCI/G
5 B	09/27/19	Europium-154	-0.0174	0.0275	0.0409	U	PCI/G
5 B	09/27/19	Europium-155	0	0.0514	0.0501	UI	PCI/G
5 B	09/27/19	Holmium-166m	0.00545	0.0113	0.0194	U	PCI/G
5 B	09/27/19	Lead-210	2 41	2.68	3 22	U	PCI/G
5 B	09/27/19	Lead-212	2.02	0.0349	0.0227	0	PCI/G
5 B	09/27/19	Lead-212	1.65	0.0453	0.0253		PCI/G
5 B	09/27/19	Nentunium 230	0.0318	0.0747	0.0233	ΤI	PCI/G
5 B 5 B	09/27/19	Nichium 94	0.0518	0.0023	0.127		PCI/G
5 D	00/27/10	Potossium 40	27.8	0.00723	0.0112	01	PCI/G
5 D	09/27/19	Promothium 147	07.8	210	256	T I	PCI/G
5 D	09/27/19	Profiction 221	97.0	0.156	0.172		PCI/G
5 D 5 D	09/27/19	Protectinium-231	1 22	0.136	0.1/3	UI	PCI/G
J D 5 D	09/27/19	Radiuii-220	1.55	0.0406	0.021		PCI/G
5 B	09/27/19	Kadium-228	1.99	0.0841	0.0401	TT	PCI/G
5 B	09/27/19	Sodium-22	-0.00653	0.00987	0.0147	U	PCI/G
2 B	09/27/19	Tellurium-125m	4.83	4.56	7.25	U	PCI/G
5 B	09/27/19	Thallium-208	0.571	0.0209	0.0117		PCI/G
5 B	09/27/19	Thorium-231	0.0524	0.146	0.235	U	PCI/G
5 B	09/27/19	Thorium-234	1.27	0.815	0.768		PCI/G

Table B-1. Complete Results from the GEL Laboratory

	Iabl	le B-I. Complete R	esuits from	the GEL La	iborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
5 B	09/27/19	Thulium-171	1.96	7.97	14	U	PCI/G
5 B	09/27/19	Tin-126	0	0.0398	0.0347	UI	PCI/G
5 B	09/29/19	Iodine-129	0.0399	0.309	0.64	U	PCI/G
5 B	10/01/19	Polonium-210	0.692	0.205	0.134		PCI/G
5 B	09/30/19	Thorium-228	1.9	0.233	0.134		PCI/G
5 B	09/30/19	Thorium-229	0.129	0.0873	0.127		PCI/G
5 B	09/30/19	Thorium-230	1.08	0.0073	0.127		PCI/G
5 B	09/30/19	Thorium 232	1.00	0.173	0.102		PCI/G
5 D	10/01/10		0.0505	0.137	0.092	II	
5 D	10/01/19		0.0303	0.0374	0.0519	0	PCI/G
5 D	10/01/19	Ul : 225/234	0.917	0.129	0.0304	TT	PCI/G
5 B	10/01/19	Uranium-235/236	0.0366	0.0335	0.0438	U	PCI/G
5 B	10/01/19	Uranium-238	1.18	0.145	0.0437		PCI/G
5 B	10/01/19	Neptunium-236	-0.00319	0.00769	0.0197	U	PCI/G
5 B	10/01/19	Plutonium-236	-0.00319	0.00769	0.0197	U	PCI/G
5 B	10/01/19	Plutonium-239/240	0.00295	0.0112	0.0213	U	PCI/G
5 B	10/01/19	Plutonium-242	-0.0174	0.0121	0.0339	U	PCI/G
5 B	10/01/19	Plutonium-244	0.00403	0.00712	0.00604	U	PCI/G
5 B	10/01/19	Neptunium-237	0.00185	0.013	0.0268	U	PCI/G
5 B	10/04/19	Plutonium-241	1.15	2.01	3.4	U	PCI/G
5 B	10/01/19	Iron-55	-2.35	2.56	3.81	U	PCI/G
5 B	09/28/19	Nickel-63	0.51	0.481	0.805	U	PCI/G
5 B	09/25/19	Technetium-99	0.629	0.411	0.685	U	PCI/G
5 B	09/27/19	Tritium	-1.11	2.45	4.6	Ū	PCI/G
5 B	09/27/19	Carbon-14	-0.445	1 69	2 97	U	PCI/G
5 B	09/30/19	Nickel-59	-0.193	1.05	1.96	<u> </u>	PCI/G
5 B	10/03/19	Strontium-90	0.0122	0.0000	0.015	<u> </u>	PCI/G
5 B	10/03/19	Vttrium 90	0.0122	0.0000	0.015	U	PCI/G
5 D	10/05/10	Amoriaium 241	0.0122	0.00707	0.015	U	PCI/G
5 D	10/05/19	Americium 241	0.0120	0.0173	0.029	U	PCI/G
5 D	10/05/19	Americani-243	-0.0204	0.0202	0.0442	U	PCI/G
3 B 5 D	10/05/19	Curium-243/244	7.19E-10	0.0137	0.0252	U	PCI/G
3 B	10/05/19	Curium-245/246	7.18E-10	0.0103	0.0206	<u> </u>	PCI/G
50	09/26/19	Actinium-225	-0.63/	2.09	3.64	U	PCI/G
<u>5 C</u>	09/26/19	Actinium-227	0.0215	0.075	0.131	U	PCI/G
5 C	09/26/19	Actinium-228	1.55	0.16	0.0736		PCI/G
5 C	09/26/19	Antimony-125	0.0011	0.0298	0.0495	U	PCI/G
5 C	09/26/19	Barium-137m	0.0336	0.0199	0.0196		PCI/G
5 C	09/26/19	Bismuth-212	1.97	0.405	0.27		PCI/G
5 C	09/26/19	Bismuth-213	0.0182	0.0344	0.0583	U	PCI/G
5 C	09/26/19	Bismuth-214	1.17	0.0705	0.0377		PCI/G
5 C	09/26/19	Cesium-134	0	0.0293	0.0367	UI	PCI/G
5 C	09/26/19	Cesium-137	0.0355	0.0211	0.0207		PCI/G
5 C	09/26/19	Cobalt-60	-0.00535	0.0132	0.023	U	PCI/G
5 C	09/26/19	Europium-152	-0.00213	0.0301	0.0508	U	PCI/G
5 C	09/26/19	Europium-154	-0.0114	0.0447	0.0788	U	PCI/G
5 C	09/26/19	Europium-155	0	0.0505	0.0469	UI	PCI/G
5 C	09/26/19	Holmium-166m	-0.0099	0.0204	0.035	U	PCI/G
5 C	09/26/19	Lead-210	1.01	0.434	0.344		PCI/G
5 C	09/26/19	Lead-212	1.46	0.0431	0.029		PCI/G
5 C	09/26/19	Lead-214	1.15	0.0642	0.0376		PCI/G
5 C	09/26/19	Neptunium-239	0	0.148	0.124	UI	PCI/G
5 C	09/26/19	Niobium-94	0.0131	0.0112	0.0208	U	PCI/G
50	09/26/19	Potassium-40	20	0.708	0 184	5	PCI/G
50	09/26/19	Promethium-147	5.01	235	362	I	PCI/G
50	00/26/10	Protoctinium 221	5.91	0.202	0 222	<u>п</u>	PCI/C
50	09/26/19	Padium 226	1 17	0.200	0.223	UI	PCI/G
50	09/20/19	Radium 220	1.1/	0.0705	0.0377		PCI/G
50	09/20/19	Radium-228	1.55	0.16	0.0736	TT	PCI/G
50	09/26/19	Sodium-22	-0.00376	0.0161	0.0284	U	PCI/G
50	09/26/19	Tellurium-125m	4.63	6.42	6.6	U	PCI/G
<u>5 C</u>	09/26/19	Thallium-208	0.478	0.0329	0.0196		PCI/G
5 C	09/26/19	Thorium-231	0.0283	0.207	0.327	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
5 C	09/26/19	Thorium-234	1.2	0.458	0.341		PCI/G
5 C	09/26/19	Thulium-171	0	2.68	2.91	UI	PCI/G
5 C	09/26/19	Tin-126	0	0.0314	0.0252	UI	PCI/G
5 C	09/29/19	Iodine-129	0.0919	0.206	0.606	U	PCI/G
5 C	10/01/19	Polonium-210	0.797	0.223	0.131		PCI/G
5 C	09/30/19	Thorium-228	1.55	0.204	0.0904		PCI/G
5 C	09/30/19	Thorium-229	0.0316	0.0541	0.0911	IJ	PCI/G
50	09/30/19	Thorium 220	1.26	0.179	0.0777	0	PCI/G
50	09/30/19	Thorium 232	1.20	0.173	0.0775		PCI/G
50	10/01/10	Linonium 222	0.0128	0.104	0.0775	TI	PCI/G
50	10/01/19	Uranium-252	0.0128	0.0420	0.0703	0	PCI/G
50	10/01/19	Uranium-255/254	1.13	0.152	0.0757	TT	PCI/G
5 C	10/01/19	Uranium-235/236	0.0546	0.0505	0.0759	U	PCI/G
5 C	10/01/19	Uranium-238	1.12	0.152	0.0799		PCI/G
5 C	10/01/19	Neptunium-236	-0.00487	0.00601	0.0182	U	PCI/G
5 C	10/01/19	Plutonium-236	-0.00487	0.00601	0.0182	U	PCI/G
5 C	10/01/19	Plutonium-239/240	0.0102	0.00999	0.0109	U	PCI/G
5 C	10/01/19	Plutonium-242	0.00083	0.0161	0.0318	U	PCI/G
5 C	10/01/19	Plutonium-244	0.00744	0.00836	0.00558	Х	PCI/G
5 C	10/01/19	Neptunium-237	-0.00259	0.0111	0.0271	U	PCI/G
5 C	10/04/19	Plutonium-241	0.28	1.86	3.21	U	PCI/G
5 C	09/30/19	Iron-55	-1.65	3.17	4.85	U	PCI/G
5 C	09/28/19	Nickel-63	0.018	0.468	0.804	U	PCI/G
5 C	09/25/19	Technetium-99	0.396	0.423	0.711	U	PCI/G
5 C	09/27/19	Tritium	-1.31	2.4	4.54	U	PCI/G
5 C	09/27/19	Carbon-14	15	1.75	2 94	U	PCI/G
5 C	09/30/19	Nickel-59	0.137	0 476	1.08	<u>U</u>	PCI/G
50	10/05/19	Americium-241	-0.00885	0.170	0.0330	<u> </u>	PCI/G
50	10/05/19	Americium 243	0.00003	0.0137	0.0337	U	PCI/G
5 C	10/05/19	$\frac{1}{243}$	0.0092	0.0247	0.044	<u> </u>	PCI/G
50	10/05/19	Curium-245/244	-0.00327	0.013	0.0311	U	PCI/G
50	10/05/19	Curium-243/246	0.00267	0.0117	0.0204	U	PCI/G
50	10/08/19	Strontium-90	0.0167	0.00802	0.0129		PCI/G
<u>5 C</u>	10/08/19	Yttrium-90	0.0167	0.00802	0.0129		PCI/G
6 A	09/30/19	Polonium-210	1.85	0.329	0.0452		PCI/G
6 A	10/01/19	Thorium-228	0.64	0.149	0.135		PCI/G
6 A	10/01/19	Thorium-229	0.0527	0.0578	0.0884	U	PCI/G
6 A	10/01/19	Thorium-230	0.802	0.155	0.117		PCI/G
6 A	10/01/19	Thorium-232	0.492	0.116	0.0628		PCI/G
6 A	09/29/19	Uranium-232	0.0582	0.0487	0.0741	U	PCI/G
6 A	09/29/19	Uranium-233/234	0.547	0.0903	0.0482		PCI/G
6 A	09/29/19	Uranium-235/236	0.018	0.0274	0.0444	U	PCI/G
6 A	09/29/19	Uranium-238	0.482	0.0868	0.0581		PCI/G
6 A	09/28/19	Neptunium-236	-0.00377	0.00691	0.0152	U	PCI/G
6 A	09/28/19	Plutonium-236	-0.00377	0.00691	0.0152	U	PCI/G
6 A	09/28/19	Plutonium-239/240	0.00273	0.00735	0.0131	U	PCI/G
6 A	09/28/19	Plutonium-242	0.00518	0.0095	0.0159	U	PCI/G
6 A	09/28/19	Plutonium-244	0.00364	0.00617	0.0101	U	PCI/G
6 A	09/30/19	Neptunium-237	-0.00346	0.00642	0.0175	U	PCI/G
6 A	10/03/19	Plutonium-241	1.38	1.66	2.79	Ū	PCI/G
6 A	09/14/19	Actinium-225	-0 294	0 581	0.936	U	PCI/G
6 A	09/14/19	Actinium-227	0.0302	0.0454	0.0688	U	PCI/G
6 A	09/14/19	Actinium-228	0.631	0.0402	0.0347		PCI/G
6 4	09/14/19	Antimony_125	0.031	0.0493	0.0347	I	PCI/G
6 1	00/14/19	Parium 127m	0.00232	0.0123	0.0221	U	PCI/C
6 A	09/14/19	Damuth 212	0.0299	0.00/9/	0.00834		PCI/G
0 A	09/14/19	Dismun-212	0.308	0.154	0.0240	TT	PCI/G
0 A	09/14/19	Bismuth-213	0.0122	0.0152	0.0248	U	PCI/G
0 A	09/14/19	BISMUTH-214	0.617	0.0279	0.0155	* **	PCI/G
6 A	09/14/19	Cesium-134	0	0.00706	0.0121	UI	PCI/G
6 A	09/14/19	Cesium-137	0.0316	0.00842	0.00881		PCI/G
6 A	09/14/19	Cobalt-60	0.0000405	0.00534	0.00961	U	PCI/G
6 A	09/14/19	Europium-152	0.00186	0.0138	0.0235	U	PCI/G
6 A	09/14/19	Europium-154	-0.00194	0.0208	0.0344	U	PCI/G
6 A	09/14/19	Europium-155	0	0.0317	0.036	UI	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I ad	ie B-1. Complete F	cesuits from	the GEL La	adorator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
6 A	09/14/19	Holmium-166m	-0.00541	0.00833	0.0141	U	PCI/G
6 A	09/14/19	Lead-210	0.839	1.39	1.69	U	PCI/G
6 A	09/14/19	Lead-212	0.603	0.0193	0.0152		PCI/G
6 A	09/14/19	Lead-214	0.707	0.0284	0.0176		PCI/G
6 A	09/14/19	Neptunium-239	-0.0288	0.0529	0.0873	U	PCI/G
6 A	09/14/19	Niobium-94	0.000819	0.00464	0.00805	U	PCI/G
6 A	09/14/19	Potassium-40	32	0.422	0.0691	0	PCI/G
6 A	09/14/19	Promethium-147	-4.46	150	249	II	PCI/G
6 A	00/14/10	Protectinium 231	00	0.13	0.111		PCI/G
6 A	09/14/19	Padium 226	0.617	0.13	0.111	01	PCI/G
6 A	09/14/19	Radium 220	0.017	0.0279	0.0133		PCI/G
0 A	09/14/19	Radium-228	0.031	0.0493	0.0347	TT	PCI/G
0 A	09/14/19	Sodium-22	-0.00299	0.0075	0.0123	<u> </u>	PCI/G
6 A	09/14/19	Tellurium-125m	1.55	2.85	4.44	U	PCI/G
6 A	09/14/19	Thallium-208	0.189	0.0139	0.00812	••	PCI/G
6 A	09/14/19	Thorium-231	-0.0673	0.0982	0.155	<u> </u>	PCI/G
6 A	09/14/19	Thorium-234	0	0.543	0.523	UI	PCI/G
6 A	09/14/19	Thulium-171	0.501	5.05	8.51	U	PCI/G
6 A	09/14/19	Tin-126	0	0.0243	0.0251	UI	PCI/G
6 A	09/30/19	Iodine-129	0.214	0.458	0.527	U	PCI/G
6 A	09/25/19	Technetium-99	-0.0394	0.289	0.493	U	PCI/G
6 A	09/28/19	Strontium-90	0.00545	0.00871	0.0148	U	PCI/G
6 A	09/28/19	Yttrium-90	0.00545	0.00871	0.0148	U	PCI/G
6 A	09/27/19	Nickel-63	-0.0179	0.305	0.522	U	PCI/G
6 A	09/28/19	Iron-55	1.23	2.75	3.96	U	PCI/G
6 A	09/28/19	Tritium	-0.296	2.06	3.62	U	PCI/G
6 A	09/26/19	Carbon-14	0.974	1.41	2.39	U	PCI/G
6 A	09/26/19	Nickel-59	0.0341	0.281	0.594	U	PCI/G
6 A	10/03/19	Americium-241	0.0122	0.02	0.0329	U	PCI/G
6 A	10/03/19	Americium-243	-0.00751	0.0289	0.0604	U	PCI/G
6 A	10/03/19	Curium-243/244	0.00343	0.0132	0.0245	U	PCI/G
6 A	10/03/19	Curium-245/246	0.00407	0.0156	0.029	U	PCI/G
6 B	09/30/19	Polonium-210	1.24	0.28	0.154		PCI/G
6 B	10/01/19	Thorium-228	1.05	0.201	0.165		PCI/G
6 B	10/01/19	Thorium-229	0.0772	0.0801	0.125	U	PCI/G
6 B	10/01/19	Thorium-230	1.25	0.197	0.0852		PCI/G
6 B	10/01/19	Thorium-232	0.906	0.165	0.023		PCI/G
6 B	09/30/19	Uranium-232	-0.0377	0.0379	0.0809	U	PCI/G
6 B	09/30/19	Uranium-233/234	1.03	0.117	0.053	0	PCI/G
6 B	09/30/19	Uranium-235/236	0.069	0.0359	0.0404		PCI/G
6 B	09/30/19	Uranium-238	0.005	0.0335	0.053		PCI/G
6 B	09/28/19	Neptunium-236	-0.00426	0.0059	0.0143	IJ	PCI/G
6 B	09/28/19	Plutonium-236	-0.00426	0.0059	0.0143	<u>U</u>	PCI/G
6 B	09/28/19	Plutonium-239/240	0.00420	0.0059	0.0145	<u> </u>	PCI/G
6 B	09/28/19	Plutonium 242	0.00308	0.00008	0.0201	<u> </u>	PCI/G
6 B	09/28/10	Plutonium 244	0.00103	0.0107	0.0201	U	PCI/G
6 B	09/20/19	Nentunium 227	0.00010	0.00037	0.00780	U	PCI/G
6 B	10/03/10	Diutonium 241	0.00304	0.00033	0.00901	U	PCI/G
0 D	10/03/19	A stinium 225	-0.141	0.725	3.3	U	PCI/G
0 D	07/10/17	Actinium 223	-0.109	0.733	1.08	U 11	PCI/G
0 B 6 D	09/18/19	Actinium-227	-0.00883	0.03//	0.0397	U	PCI/G
0 B	09/18/19	Actinium-228	0.896	0.0481	0.0327	ΥT	PCI/G
0 B	09/18/19	Antimony-125	0.0142	0.012	0.0207	U	PCI/G
6 B	09/18/19	Barium-137m	0.0618	0.00841	0.00746		PCI/G
6 B	09/18/19	Bismuth-212	0.897	0.121	0.108		PCI/G
6 B	09/18/19	Bismuth-213	0.0186	0.0148	0.023	U	PCI/G
6 B	09/18/19	Bismuth-214	0.942	0.0255	0.014		PCI/G
6 B	09/18/19	Cesium-134	0	0.0119	0.011	UI	PCI/G
6 B	09/18/19	Cesium-137	0.0653	0.00888	0.00788		PCI/G
6 B	09/18/19	Cobalt-60	0.00293	0.00573	0.0101	U	PCI/G
6 B	09/18/19	Europium-152	-0.00506	0.0123	0.0211	U	PCI/G
6 B	09/18/19	Europium-154	0.000275	0.0213	0.0336	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
6 B	09/18/19	Europium-155	0	0.0275	0.0291	UI	PCI/G
6 B	09/18/19	Holmium-166m	-0.00186	0.00772	0.0133	U	PCI/G
6 B	09/18/19	Lead-210	2.17	1.94	3.53	U	PCI/G
6 B	09/18/19	Lead-212	0.886	0.0171	0.0133	-	PCI/G
6 B	09/18/19	Lead-214	1.11	0.0269	0.0452		PCI/G
6 B	09/18/19	Neptunium-239	0	0.0656	0.072	UI	PCI/G
6 B	09/18/19	Niobium-94	0.00483	0.00425	0.00753	U	PCI/G
6 B	09/18/19	Potassium-40	22.2	0 332	0.0646	0	PCI/G
6 B	09/18/19	Promethium 147	17.0	120	202	ΤŢ	PCI/G
6 D	00/18/10	Drotostinium 221	17.9	0.106	0.104	<u> </u>	PCI/G
6 B	09/18/19	Padium 226	0.042	0.100	0.104	01	PCI/G
0 B	09/10/19	Radium 220	0.942	0.0233	0.014		PCI/G
0 D	09/18/19	Radium-226	0.890	0.0481	0.0527	TT	PCI/G
0 B	09/18/19	Sodium-22	-0.00332	0.00773	0.012	U	PCI/G
6 B	09/18/19	Tellurium-125m	0.836	2.21	3.//	U	PCI/G
6 B	09/18/19	Thallium-208	0.257	0.0125	0.00768	* *	PCI/G
6 B	09/18/19	Thorium-231	0.0658	0.0913	0.144	U	PCI/G
6 B	09/18/19	Thorium-234	0.979	0.655	0.562		PCI/G
6 B	09/18/19	Thulium-171	-2.21	7.09	12.6	U	PCI/G
6 B	09/18/19	Tin-126	0	0.0225	0.0222	UI	PCI/G
6 B	09/30/19	Iodine-129	0.115	0.297	0.665	U	PCI/G
6 B	09/25/19	Technetium-99	-0.0799	0.319	0.545	U	PCI/G
6 B	09/28/19	Strontium-90	0.00139	0.00843	0.0148	U	PCI/G
6 B	09/28/19	Yttrium-90	0.00139	0.00843	0.0148	U	PCI/G
6 B	09/27/19	Nickel-63	-0.0188	0.266	0.456	U	PCI/G
6 B	09/28/19	Iron-55	2.34	2.71	3.86	U	PCI/G
6 B	09/28/19	Tritium	1.22	2.11	3.6	U	PCI/G
6 B	09/26/19	Carbon-14	0.976	1.46	2.49	U	PCI/G
6 B	09/27/19	Nickel-59	0.574	0.782	1.53	U	PCI/G
6 B	10/03/19	Americium-241	-0.000194	0.0257	0.0538	U	PCI/G
6 B	10/03/19	Americium-243	0.00308	0.028	0.0542	U	PCI/G
6 B	10/03/19	Curium-243/244	-0.0000961	0.0195	0.042	U	PCI/G
6 B	10/03/19	Curium-245/246	0.00394	0.0151	0.0281	U	PCI/G
6 C	09/30/19	Polonium-210	1.49	0.31	0.15		PCI/G
6 C	09/29/19	Thorium-228	0.783	0.154	0.112		PCI/G
6 C	09/29/19	Thorium-229	0.0714	0.0583	0.0799	U	PCI/G
6 C	09/29/19	Thorium-230	1.07	0.171	0.0992		PCI/G
6 C	09/29/19	Thorium-232	0.6	0.126	0.0619		PCI/G
6 C	09/30/19	Uranium-232	-0.0044	0.0579	0.109	U	PCI/G
6 C	09/30/19	Uranium-233/234	0.0014	0.118	0.0546	0	PCI/G
6 C	09/30/19	Uranium_235/234	0.500	0.0333	0.0364		PCI/G
6 C	09/30/19	Uranium-238	0.0552	0.124	0.0671		PCI/G
6 C	09/30/19	Nentunium 226	0.900	0.124	0.0122	11	PCI/G
6 C	00/30/19	Diutonium 226	0.000811	0.00057	0.0133		PCI/G
60	09/30/19	Plutonium 220/240	0.000811	0.00037	0.0133		PCI/G
60	09/30/19	Diutonium 242	0.0112	0.0119	0.01/9		PCI/G
	09/30/19	Plutonium 244	-0.00499	0.00896	0.0191	U 11	PCI/G
	09/30/19	Flutonium-244	0.00321	0.0069	0.0114	U 11	PCI/G
0 C	09/30/19	Distanting 241	0.00417	0.00904	0.0152	U	PCI/G
00	10/03/19	riutonium-241	0.751	1.68	2.87	U	PCI/G
6 C	09/14/19	Actinium-225	0.103	0.723	1.18	U 	PCI/G
6 C	09/14/19	Actinium-227	-0.0214	0.0542	0.0867	U	PCI/G
6 C	09/14/19	Actinium-228	1.19	0.0775	0.0477		PCI/G
6 C	09/14/19	Antimony-125	0.00725	0.0187	0.0297	U	PCI/G
6 C	09/14/19	Barium-137m	0.083	0.0142	0.0121		PCI/G
6 C	09/14/19	Bismuth-212	1.36	0.23	0.162		PCI/G
6 C	09/14/19	Bismuth-213	0.014	0.0208	0.0334	U	PCI/G
6 C	09/14/19	Bismuth-214	1.05	0.0431	0.0219		PCI/G
6 C	09/14/19	Cesium-134	0	0.0152	0.0188	UI	PCI/G
6 C	09/14/19	Cesium-137	0.0877	0.015	0.0128		PCI/G
6 C	09/14/19	Cobalt-60	-0.00104	0.00794	0.0138	U	PCI/G
6 C	09/14/19	Europium-152	-0.00931	0.0182	0.0303	U	PCI/G
6 C	09/14/19	Europium-154	-0.0198	0.0268	0.0453	U	PCI/G
6 C	09/14/19	Europium-155	0	0.034	0.0368	UI	PCI/G

Table B-1. Complete Results from the GEL Laboratory

	1 ad	ie B-1. Complete F	cesuits from	the GEL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
6 C	09/14/19	Holmium-166m	-0.00761	0.0119	0.0197	U	PCI/G
6 C	09/14/19	Lead-210	1.26	0.25	0.247		PCI/G
6 C	09/14/19	Lead-212	1.16	0.0268	0.0196		PCI/G
6 C	09/14/19	Lead-214	1.19	0.0389	0.072		PCI/G
6 C	09/14/19	Neptunium-239	-0.0213	0.0581	0.0971	U	PCI/G
6 C	09/14/19	Niobium-94	0.00328	0.00671	0.0115	U	PCI/G
6 C	09/14/19	Potassium-40	29.8	0.00071	0.00115	0	PCI/G
60	09/14/19	Promothium 147	152	164	0.0989	ŢŢ	PCI/G
00	09/14/19	Profileunum-147	-155	0.146	0.15		PCI/G
6 C	09/14/19	Protactinium-231	0	0.140	0.15	UI	PCI/G
60	09/14/19	Radium-226	1.05	0.0431	0.0219		PCI/G
6 C	09/14/19	Radium-228	1.19	0.0775	0.0477	~ ~	PCI/G
6 C	09/14/19	Sodium-22	-0.00417	0.00986	0.0163	U	PCI/G
6 C	09/14/19	Tellurium-125m	1.97	3.22	4.62	U	PCI/G
6 C	09/14/19	Thallium-208	0.37	0.0198	0.0112		PCI/G
6 C	09/14/19	Thorium-231	-0.0696	0.129	0.202	U	PCI/G
6 C	09/14/19	Thorium-234	1.12	0.344	0.288		PCI/G
6 C	09/14/19	Thulium-171	0	2.17	2.16	UI	PCI/G
6 C	09/14/19	Tin-126	0	0.0255	0.0218	UI	PCI/G
6 C	09/30/19	Iodine-129	0.0379	0.261	0.659	U	PCI/G
6 C	09/25/19	Technetium-99	-0.256	0.376	0.647	- U	PCI/G
6 C	09/28/19	Strontium-90	-0.00055	0.00835	0.0148	<u> </u>	PCI/G
60	09/28/10	Vttrium_90	_0.00055	0.00035	0.0140	U	PCI/G
6 C	09/28/19	Niekol 62	-0.00033	0.00833	0.0148	U	PCI/G
<u>6C</u>	09/27/19		0.0301	0.239	0.408	0	PCI/G
60	09/30/19	Iron-55	0.03	1.94	2.65	* *	PCI/G
6 C	09/28/19	Iritium	-0.0908	2.06	3.61	0	PCI/G
6 C	09/26/19	Carbon-14	2.32	1.47	2.4	U	PCI/G
6 C	09/27/19	Nickel-59	0.189	0.38	0.931	U	PCI/G
6 C	10/03/19	Americium-241	-0.00332	0.0157	0.0355	U	PCI/G
6 C	10/03/19	Americium-243	0.00196	0.0158	0.03	U	PCI/G
6 C	10/03/19	Curium-243/244	0.00787	0.0152	0.0252	U	PCI/G
6 C	10/03/19	Curium-245/246	-0.00228	0.00998	0.0218	U	PCI/G
8 A	09/30/19	Polonium-210	2.54	0.386	0.176		PCI/G
8 A	09/29/19	Thorium-228	0.832	0.174	0.145		PCI/G
8 A	09/29/19	Thorium-229	0.0942	0.0738	0.104	U	PCI/G
8 A	09/29/19	Thorium-230	2.52	0.268	0.089		PCI/G
8 A	09/29/19	Thorium-232	0.771	0.153	0.0887		PCI/G
8 4	09/29/19	Uranium-232	0.771	0.0246	0.0491	II	PCI/G
0 A 9 A	00/20/10	Uronium 222/224	2 16	0.0240	0.0491	0	PCI/G
0 A	09/29/19		0.175	0.165	0.0488		
0 A	09/29/19		0.175	0.0303	0.044		PCI/G
8 A	09/29/19	Uranium-238	2.18	0.185	0.0304	* *	PCI/G
ð A	09/28/19	Neptunium-236	-0.00279	0.0128	0.0257	U	PCI/G
8 A	09/28/19	Plutonium-236	-0.00279	0.0128	0.0257	<u> </u>	PCI/G
8 A	09/28/19	Plutonium-239/240	0.00135	0.0142	0.0266	U	PCI/G
8 A	09/28/19	Plutonium-242	0.0113	0.0104	0.0151	U	PCI/G
8 A	09/28/19	Plutonium-244	0.00673	0.00791	0.0103	U	PCI/G
8 A	09/30/19	Neptunium-237	-0.0038	0.00705	0.0192	U	PCI/G
8 A	10/02/19	Plutonium-241	0.649	2.4	4.11	U	PCI/G
8 A	09/14/19	Actinium-225	-0.601	0.907	1.45	U	PCI/G
8 A	09/14/19	Actinium-227	0.0551	0.0745	0.113	U	PCI/G
8 A	09/14/19	Actinium-228	0.921	0.0724	0.0464		PCI/G
8 A	09/14/19	Antimony-125	0.00392	0.0206	0.0362	U	PCI/G
8 A	09/14/19	Barium-137m	0.0624	0.012	0.0112		PCI/G
8 A	09/14/19	Bismuth-212	0.0024	0.188	0 166		PCI/G
8 4	09/14/10	Bismuth_212	0.0112	0.100	0.100	IT	PCI/G
8 4	09/14/10	Bismuth 214	0.0113	0.0217	0.0304	U	PCI/C
0 A	07/14/19		2.10	0.0337	0.0231	ŢŢŢ	
0 A	09/14/19	Cesium-134	0	0.0105	0.0183	UI	PCI/G
ð A	09/14/19	Cesium-13/	0.066	0.0127	0.0118	**	PCI/G
8 A	09/14/19	Cobalt-60	-0.00236	0.00755	0.0132	<u> </u>	PCI/G
8 A	09/14/19	Europium-152	-0.00469	0.0215	0.0378	U	PCI/G
8 A	09/14/19	Europium-154	0.00131	0.0253	0.0434	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
8 A	09/14/19	Europium-155	0.0122	0.0329	0.0555	U	PCI/G
8 A	09/14/19	Holmium-166m	-0.000469	0.0119	0.0203	U	PCI/G
8 A	09/14/19	Lead-210	2.36	3.9	4.16	U	PCI/G
8 A	09/14/19	Lead-212	1	0.0304	0.0235		PCI/G
8 A	09/14/19	Lead-214	2.54	0.0603	0.0275		PCI/G
8 A	09/14/19	Neptunium-239	-0.00531	0.0824	0.137	U	PCI/G
8 A	09/14/19	Niobium-94	0	0.0114	0.0126	UI	PCI/G
8 A	09/14/19	Potassium-40	16.4	0.407	0.111		PCI/G
8 A	09/14/19	Promethium-147	188	230	388	U	PCI/G
8 A	09/14/19	Protactinium-231	0	0 196	0.19	UI UI	PCI/G
8 4	09/14/19	Radium-226	2 16	0.0537	0.0231	01	PCI/G
8 4	09/14/19	Radium-228	0.921	0.0537	0.0251		PCI/G
8 A	00/14/19	Sodium 22	0.000205	0.0002	0.0404	ΤI	PCI/G
0 A	09/14/19	Tollurium 125m	6.12	5.14	6.66	U	PCI/G
0 A	09/14/19	The line 208	0.12	0.0201	0.00	0	PCI/G
8 A	09/14/19	Thailium-208	0.276	0.0201	0.0125	1.11	PCI/G
8 A	09/14/19	Thorium-231	0	0.258	0.248	UI	PCI/G
8 A	09/14/19	Thorium-234	2.43	0.877	0.945	**	PCI/G
8 A	09/14/19	I nulium-1/1	1.7	10.3	17.7	U	PCI/G
8 A	09/14/19	Tin-126	0	0.0401	0.0398	UI	PCI/G
8 A	09/30/19	Iodine-129	0.217	0.271	0.679	U	PCI/G
8 A	09/24/19	Technetium-99	-0.195	0.398	0.683	U	PCI/G
8 A	10/05/19	Strontium-90	-0.0101	0.00843	0.015	U	PCI/G
8 A	10/05/19	Yttrium-90	-0.0101	0.00843	0.015	U	PCI/G
8 A	09/27/19	Nickel-63	-0.0597	0.272	0.467	U	PCI/G
8 A	09/29/19	Iron-55	1.61	2.12	3.09	U	PCI/G
8 A	09/27/19	Tritium	0.184	2.06	3.58	U	PCI/G
8 A	09/26/19	Carbon-14	0.0117	1.42	2.49	U	PCI/G
8 A	09/26/19	Nickel-59	0.438	0.55	1.33	U	PCI/G
8 A	10/03/19	Americium-241	0.0043	0.0106	0.0169	U	PCI/G
8 A	10/03/19	Americium-243	0.012	0.0185	0.0303	U	PCI/G
8 A	10/03/19	Curium-243/244	-0.0000285	0.00929	0.0201	U	PCI/G
8 A	10/03/19	Curium-245/246	0.00351	0.0103	0.0105	U	PCI/G
8 B	10/01/19	Polonium-210	2.33	0.396	0.199		PCI/G
8 B	10/01/19	Thorium-228	0.792	0.152	0.105		PCI/G
8 B	10/01/19	Thorium-229	0.0754	0.0578	0.0773	U	PCI/G
8 B	10/01/19	Thorium-230	2 63	0 254	0.0693		PCI/G
8 B	10/01/19	Thorium-232	0.687	0.131	0.0073		PCI/G
8 B	00/20/10	Uronium 232	0.067	0.0368	0.0744	ΤI	PCI/G
8 B	09/29/19	Uranium 233/234	-0.0104	0.0508	0.0744	0	PCI/G
8 D	09/29/19	Uranium 225/224	0.228	0.100	0.0312		DCL/G
8 B	09/29/19	Uranium 229	0.238	0.0302	0.0101		PCI/G
	07/27/17	Vianum 226	2.3/	0.170	0.0448	Τĭ	
0 B	09/28/19	Distantia 226	-0.00235	0.00923	0.019	U	PCI/G
8 B	09/28/19	Plutonium-236	-0.00235	0.00923	0.019	U	PCI/G
δ B	09/28/19	Plutonium-239/240	0.00454	0.00943	0.0163	U	PCI/G
8 B	09/28/19	Plutonium-242	0.0154	0.0145	0.0193	U	PCI/G
8 B	09/28/19	Plutonium-244	0.0034	0.00588	0.00868	U	PCI/G
8 B	09/30/19	Neptunium-237	0.00665	0.0105	0.0159	U	PCI/G
8 B	10/02/19	Plutonium-241	0.092	2.25	3.87	U	PCI/G
8 B	09/14/19	Actinium-225	0.278	0.868	1.41	U	PCI/G
8 B	09/14/19	Actinium-227	0.0437	0.0651	0.107	U	PCI/G
8 B	09/14/19	Actinium-228	0.961	0.0709	0.0465		PCI/G
8 B	09/14/19	Antimony-125	0.0284	0.0198	0.0354	U	PCI/G
8 B	09/14/19	Barium-137m	0.0436	0.0108	0.011		PCI/G
8 B	09/14/19	Bismuth-212	1.08	0.185	0.16		PCI/G
8 B	09/14/19	Bismuth-213	0.0149	0.021	0.0369	U	PCI/G
8 B	09/14/19	Bismuth-214	2.02	0.0529	0.0233		PCI/G
8 B	09/14/19	Cesium-134	0	0.0157	0.0185	UI	PCI/G
8 B	09/14/19	Cesium-137	0.0461	0.0114	0.0116		PCI/G
8 B	09/14/19	Cobalt-60	-0.00464	0.00767	0.0129	U	PCI/G
8 B	09/14/19	Europium-152	-0.00963	0.0207	0.0358	Ū	PCI/G
8 B	09/14/19	Europium-154	-0.0078	0.025	0.0411	U	PCI/G
8 B	09/14/19	Europium-155	0.0070	0.0464	0.0506	 	PCI/G
- -	0/11/11/	Laropiani 155	0	5.0-10-1	0.0000	51	1000

Table B-1. Complete Results from the GEL Laboratory

	1 a D I	е Б-1. Complete R	esuits from	the GEL L	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
8 B	09/14/19	Holmium-166m	-0.0018	0.0114	0.019	U	PCI/G
8 B	09/14/19	Lead-210	2.61	2.59	3.01	U	PCI/G
8 B	09/14/19	Lead-212	0.942	0.03	0.0243		PCI/G
8 B	09/14/19	Lead-214	2.44	0.0571	0.0263		PCI/G
8 B	09/14/19	Neptunium-239	-0.0145	0.0779	0.13	U	PCI/G
8 B	09/14/19	Niobium-94	0	0.012	0.0123	UI	PCI/G
8 B	09/14/19	Potassium-40	16.3	0.385	0.107	01	PCI/G
8 B	09/14/19	Promethium-147	-11.1	221	368	II	PCI/G
8 B	00/14/10	Protectinium 231	0	0.162	0.172		PCI/G
8 B	09/14/19	Padium 226	2 02	0.102	0.0233	01	PCI/G
0 D	09/14/19	Radium 220	2.02	0.0329	0.0233		
0 D	09/14/19	Radium-226	0.901	0.0709	0.0403	TT	PCI/G
0 D	09/14/19	50dium-22	-0.00291	0.00893	0.0147	<u> </u>	PCI/G
8 B	09/14/19	Tellurium-125m	4.62	0.0100	0.3	0	PCI/G
8 B	09/14/19	Thallium-208	0.304	0.0198	0.0114	**	PCI/G
8 B	09/14/19	Thorium-231	0.0811	0.21	0.249	U	PCI/G
8 B	09/14/19	Thorium-234	2.25	0.778	0.815		PCI/G
8 B	09/14/19	Thulium-171	1.65	8.19	14.2	U	PCI/G
8 B	09/14/19	Tin-126	0	0.0408	0.0375	UI	PCI/G
8 B	09/30/19	Iodine-129	-0.0222	0.199	0.517	U	PCI/G
8 B	09/24/19	Technetium-99	-0.393	0.41	0.708	U	PCI/G
8 B	09/25/19	Strontium-90	-0.00703	0.00581	0.0107	U	PCI/G
8 B	09/25/19	Yttrium-90	-0.00703	0.00581	0.0107	U	PCI/G
8 B	09/27/19	Nickel-63	0.145	0.281	0.476	U	PCI/G
8 B	09/29/19	Iron-55	5.64	2.28	3.25		PCI/G
8 B	09/27/19	Tritium	-0.671	2.06	3.66	U	PCI/G
8 B	09/26/19	Carbon-14	1.15	1.46	2.46	U	PCI/G
8 B	09/26/19	Nickel-59	0.00272	0.598	1.05	U	PCI/G
8 B	10/03/19	Americium-241	-0.0000945	0.0148	0.0316	U	PCI/G
8 B	10/03/19	Americium-243	0.00707	0.0222	0.0411	U	PCI/G
8 B	10/03/19	Curium-243/244	0.00933	0.0147	0.022	U	PCI/G
8 B	10/03/19	Curium-245/246	0.00339	0.00997	0.0102	U	PCI/G
8 C	10/05/19	Thorium-228	0.896	0.251	0.172		PCI/G
8 C	10/05/19	Thorium-229	0.0457	0.13	0.233	U	PCI/G
8 C	10/05/19	Thorium-230	2.64	0.411	0.233		PCI/G
8 C	10/05/19	Thorium-232	0.667	0.222	0.203		PCI/G
8 C	09/30/19	Polonium-210	0.545	0.162	0.0837		PCI/G
8 C	09/29/19	Uranium-232	0	0.0576	0.107	IJ	PCI/G
8 C	09/29/19	Uranium-233/234	2.24	0.173	0.0419	0	PCI/G
8 C	09/29/19	Uranium-235/236	0.147	0.0459	0.0262		PCI/G
8 C	09/29/19	Uranium-238	2 16	0.169	0.0202		PCI/G
80	09/28/19	Neptunium-236	0.00876	0.00858	0.0320	II	PCI/G
80	09/28/19	Plutonium-236	0.00876	0.00858	0.0121	<u> </u>	PCI/G
80	09/28/19	Plutonium-230/240	0.00070	0.00050	0.0121	<u> </u>	PCI/G
80	09/28/19	Plutonium 242	0.00739	0.0105	0.01/1	<u> </u>	PCI/G
80	09/28/19	Plutonium-244	0.0143	0.0120	0.0143	U	PCI/G
80	09/20/19	Nentunium 237	0.00044	0.00774	0.0101	U	PCI/G
8 C	10/02/10	Distonium 241	-0.00155	0.0115	0.0233		PCI/G
	10/05/19	A atinjum 225	1.02	2.18	3.08		PCI/G
	09/14/19	Acumum-225	0.72	0.841	1.4	U	PCI/G
	09/14/19	Actinium-227	0.044	0.0835	0.105	U	PCI/G
80	09/14/19	Actinium-228	1.07	0.0676	0.0431	T T	PCI/G
80	09/14/19	Antimony-125	0.00/29	0.018	0.0319	U	PCI/G
8 C	09/14/19	Barium-137m	0.0308	0.0112	0.0108		PCI/G
8 C	09/14/19	Bismuth-212	1.05	0.178	0.147		PCI/G
8 C	09/14/19	Bismuth-213	-0.00538	0.0203	0.0353	U	PCI/G
8 C	09/14/19	B1smuth-214	2.05	0.0491	0.0202		PCI/G
8 C	09/14/19	Cesium-134	0	0.00894	0.0153	UI	PCI/G
8 C	09/14/19	Cesium-137	0.0325	0.0119	0.0114		PCI/G
8 C	09/14/19	Cobalt-60	0.00417	0.00705	0.0128	U	PCI/G
8 C	09/14/19	Europium-152	0.00294	0.0195	0.0347	U	PCI/G
8 C	09/14/19	Europium-154	0.0132	0.024	0.0384	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
8 C	09/14/19	Europium-155	0	0.0495	0.0491	UI	PCI/G
8 C	09/14/19	Holmium-166m	0.00181	0.0106	0.0181	U	PCI/G
8 C	09/14/19	Lead-210	-0.173	1.99	3.38	U	PCI/G
8 C	09/14/19	Lead-212	1.04	0.0306	0.0241		PCI/G
8 C	09/14/19	Lead-214	2.45	0.0568	0.0253		PCI/G
8 C	09/14/19	Neptunium-239	-0.00446	0.0786	0.123	U	PCI/G
8 C	09/14/19	Niobium-94	0.00622	0.01	0.0109	Ū	PCI/G
8 C	09/14/19	Potassium-40	16.9	0.376	0.103	_	PCI/G
8 C	09/14/19	Promethium-147	-139	207	345	U	PCI/G
8 C	09/14/19	Protactinium-231	0	0 147	0.176	UI UI	PCI/G
8 C	09/14/19	Radium-226	2.05	0.147	0.0202	01	PCI/G
80	00/14/19	Radium 220	1.07	0.0676	0.0202		PCI/G
80	09/14/19	Sodium 22	0.00450	0.0070	0.0431	T I	PCI/G
8 C	09/14/19	Tollumium 125m	1 15	2.80	6.14	<u> </u>	PCI/G
8 C	09/14/19	Thallium 209	0.279	0.019	0.14	0	
8 C	09/14/19	Thamium-206	0.278	0.018	0.0114	TT	PCI/G
80	09/14/19	Thorium-231	0.107	0.14	0.231	U	PCI/G
80	09/14/19	Thorium-234	2.89	0.766	0.781	* *	PCI/G
8 C	09/14/19	Thulium-1/1	-3.58	/.9/	13.8	0	PCI/G
8 C	09/14/19	Tin-126	0	0.039	0.0355	UI	PCI/G
8 C	09/30/19	Iodine-129	0.262	0.507	0.971	U	PCI/G
8 C	09/25/19	Technetium-99	-0.03	0.388	0.662	U	PCI/G
8 C	09/25/19	Strontium-90	0.00539	0.00715	0.0121	U	PCI/G
8 C	09/25/19	Yttrium-90	0.00539	0.00715	0.0121	U	PCI/G
8 C	09/27/19	Nickel-63	0.334	0.291	0.487	U	PCI/G
8 C	09/30/19	Iron-55	3.35	2.04	2.94		PCI/G
8 C	09/28/19	Tritium	1.68	2.16	3.65	U	PCI/G
8 C	09/26/19	Carbon-14	1.21	1.35	2.28	U	PCI/G
8 C	09/26/19	Nickel-59	0.468	0.816	1.49	U	PCI/G
8 C	10/03/19	Americium-241	0.0149	0.022	0.0364	U	PCI/G
8 C	10/03/19	Americium-243	-0.0149	0.0304	0.0699	U	PCI/G
8 C	10/03/19	Curium-243/244	-0.00604	0.00885	0.0261	U	PCI/G
8 C	10/03/19	Curium-245/246	0.00839	0.0206	0.0329	U	PCI/G
8 C	10/05/19	Thorium-228	0.527	0.379	0.55	U	PCI/G
8 C	10/05/19	Thorium-229	0	0.139	0.277	U	PCI/G
8 C	10/05/19	Thorium-230	2.65	0.571	0.355		PCI/G
8 C	10/05/19	Thorium-232	0.834	0.324	0.22		PCI/G
9 A	09/28/19	Polonium-210	1.44	0.324	0.145		PCI/G
9 A	09/28/19	Thorium-228	0.735	0.15	0.126		PCI/G
9 A	09/28/19	Thorium-229	0.0675	0.15	0.0992	IJ	PCI/G
9 4	09/28/19	Thorium-230	2.08	0 224	0.0677		PCI/G
9 A	09/28/19	Thorium-232	0.782	0.136	0.0077		PCI/G
	09/20/19	Uranium 232	0.782	0.130	0.0707	ΤŢ	PCI/G
9 A	09/29/19	Uranium 222/224	0 788	0.0418	0.0797	0	PCI/G
9 A	09/29/19	Uranium 225/234	0.788	0.138	0.0903		PCI/G
9 A	09/29/19	Uranium 229	0.062	0.0377	0.0787		PCI/G
2 A	09/29/19	Nontunium 226	0.79	0.133	0.007	τĭ	PCI/G
9 A	09/30/19	Neptumum-250	-0.00376	0.0077	0.0211	<u> </u>	PCI/G
9 A	09/30/19	Plutonium-230	-0.005/6	0.0077	0.0211	U 11	PCI/G
9 A	09/30/19	Plutonium-239/240	0.00908	0.0118	0.0183	<u> </u>	PCI/G
9 A	09/30/19	Plutonium-242	-0.00338	0.0134	0.0262	<u> </u>	PCI/G
9 A	09/30/19	Plutonium-244	0.00456	0.00761	0.0107	0	PCI/G
9 A	09/30/19	Neptunium-237	0.00356	0.0116	0.0219	<u> </u>	PCI/G
9 A	10/02/19	Plutonium-241	0.704	1.86	3.18	U	PCI/G
9 A	09/13/19	Actinium-225	-0.175	0.48	0.769	U	PCI/G
9 A	09/13/19	Actinium-227	0.0446	0.0365	0.0569	U	PCI/G
9 A	09/13/19	Actinium-228	0.866	0.0434	0.0277		PCI/G
9 A	09/13/19	Antimony-125	0.00156	0.0114	0.0194	U	PCI/G
9 A	09/13/19	Barium-137m	0.138	0.00781	0.00658		PCI/G
9 A	09/13/19	Bismuth-212	0.942	0.114	0.0897		PCI/G
9 A	09/13/19	Bismuth-213	-0.00376	0.0126	0.0212	U	PCI/G
9 A	09/13/19	Bismuth-214	1.15	0.025	0.0134		PCI/G
9 A	09/13/19	Cesium-134	0	0.00789	0.00908	UI	PCI/G
9 A	09/13/19	Cesium-137	0.145	0.00825	0.00695		PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I adi	e B-I. Complete R	esuits from	the GEL La	iborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
9 A	09/13/19	Cobalt-60	0.00126	0.00456	0.00802	U	PCI/G
9 A	09/13/19	Europium-152	-0.00988	0.0118	0.0201	U	PCI/G
9 A	09/13/19	Europium-154	-0.00349	0.017	0.0255	U	PCI/G
9 A	09/13/19	Europium-155	0	0.0242	0.0287	UI	PCI/G
9 A	09/13/19	Holmium-166m	0.000962	0.00666	0.0116	U	PCI/G
9 A	09/13/19	Lead-210	0.551	1.93	3.49	U	PCI/G
9 A	09/13/19	Lead-212	0.829	0.0164	0.0133		PCI/G
9 A	09/13/19	Lead-214	1.35	0.0291	0.0493		PCI/G
9 A	09/13/19	Neptunium-239	-0.00989	0.0419	0.0707	U	PCI/G
9 A	09/13/19	Niobium-94	0.0044	0.0063	0.00672	U	PCI/G
9 A	09/13/19	Potassium-40	13.6	0.236	0.0623		PCI/G
9 A	09/13/19	Promethium-147	-56	118	198	U	PCI/G
9 A	09/13/19	Protactinium-231	0	0.0977	0.102	UI	PCI/G
9 A	09/13/19	Radium-226	1.15	0.025	0.0134		PCI/G
9 A	09/13/19	Radium-228	0.866	0.0434	0.0277		PCI/G
9 A	09/13/19	Sodium-22	-0.0012	0.00607	0.00912	U	PCI/G
9 A	09/13/19	Tellurium-125m	0.694	2.14	3.55	U	PCI/G
9 A	09/13/19	Thallium-208	0.269	0.0125	0.00658	_	PCI/G
9 A	09/13/19	Thorium-231	-0.0298	0.0883	0.136	U	PCI/G
9 A	09/13/19	Thorium-234	0	0.583	0.555	UI	PCI/G
9 A	09/13/19	Thulium-171	-6.49	6.95	12.3	U	PCI/G
9 A	09/13/19	Tin-126	0.19	0.0241	0.0205	UI	PCI/G
9 A	09/30/19	Indine-129	-0.108	0.0211	0.193	U	PCI/G
9 A	09/24/19	Technetium-99	-0.374	0.437	0.753	<u> </u>	PCI/G
9 A	10/05/19	Strontium-90	0.00565	0.00739	0.0126	U	PCI/G
9 A	10/05/19	Vttrium-90	0.00565	0.00739	0.0126	<u> </u>	PCI/G
9 A	09/27/19	Nickel-63	0.00505	0.00735	0.691	<u> </u>	PCI/G
9 4	09/29/19	Iron-55	2 72	2 25	3 27	U	PCI/G
9 A	09/27/19	Tritium	0.192	2.23	3.5	<u> </u>	PCI/G
9 A	09/26/19	Carbon-14	0.11	1 43	2 48	<u> </u>	PCI/G
9 A	09/26/19	Nickel-59	0.31	0.487	1.7	U	PCI/G
9 4	10/03/19	Americium-241	0.00176	0.407	0.0208	<u> </u>	PCI/G
9 A	10/03/19	Americium-243	-0.006	0.011	0.0200	<u> </u>	PCI/G
9 4	10/03/19	Curium-243/244	0.00516	0.0195	0.0373	U	PCI/G
9 4	10/03/19	Curium-245/246	0.00342	0.0100	0.0373	<u> </u>	PCI/G
9 R	09/30/19	Polonium-210	0.00342	0.0101	0.0102	0	PCI/G
9 B	09/28/19	Thorium-228	0.730	0.179	0.0377		PCI/G
9 B	09/28/19	Thorium-220	0.018	0.0831	0.137	IJ	PCI/G
9 B 9 B	09/28/19	Thorium-230	2.05	0.0051	0.127	0	PCI/G
9 B 9 B	09/28/19	Thorium-232	0.641	0.203	0.122		PCI/G
9 B	10/03/19	Uranium-232	0.041	0.102	0.145	IJ	PCI/G
9 B 9 B	10/03/19	Uranium-233/234	1.06	0.0451	0.0770	0	PCI/G
0 B	10/03/19	Uranium 235/234	0.0353	0.0431	0.12	I I	PCI/G
9 B	10/03/19	Uranium_238	0.0333	0.0431	0.003	0	PCI/G
9 B	09/30/19	Nentunium_236	0.032	0.143	0.0347	II	PCI/G
9 B	09/30/19	Plutonium-236	0.00241	0.00928	0.0172	U	PCI/G
9 B	09/30/10	Plutonium 230/240	0.00241	0.00928	0.0172	U	PCI/G
9 B	09/30/19	Plutonium-247	0.00347	0.0118	0.0221	U	PCI/G
9 B	09/30/10	Plutonium 244	0.00739	0.0103	0.0171	U	PCI/G
9 D 9 R	09/30/19	Nentunium 227	0.00532	0.00804	0.0138	U 11	PCI/G
) D 0 R	10/02/10	Diutonium 241	0.00049	0.0111	1 24	U 11	PCI/C
7 D 0 D	00/14/19	A atinium 225	-0.503	2.43	4.24		PCI/C
7 D 0 P	09/14/19	Actinium 227	-0.392	0.739	1.31	U 11	PCI/G
7 D 0 D	09/14/19	Actinium 220	-0.00033	0.030	0.097	U	PCI/C
9 B 0 D	09/14/19	Actinium-228	0.955	0.0727	0.0412	ΤT	PCI/G
7 D 0 D	09/14/19	Anumony-123	0.00243	0.018	0.0306	U	PCI/G
9 B 0 D	09/14/19	Darium-13/m Discouth 212	0.081	0.0117	0.0104		PCI/G
9 B	09/14/19	Bismuth-212	1.18	0.17	0.144	τī	PCI/G
9 B	09/14/19	Bismuth-213	0.0212	0.0201	0.035	U	PCI/G
9 B	09/14/19	Bismuth-214	1.29	0.0441	0.0212		PCI/G
19 B	109/14/19	Ucesium-1.54	O⊥	0.01.53	0.0162	UL	TPCI/G

1.4. D .14a f. th. CELL-L 4 Table D 1 C

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
9 B	09/14/19	Cesium-137	0.0855	0.0124	0.011		PCI/G
9 B	09/14/19	Cobalt-60	0.00012	0.00743	0.0127	U	PCI/G
9 B	09/14/19	Europium-152	-0.0125	0.0203	0.0326	U	PCI/G
9 B	09/14/19	Europium-154	0.0256	0.0303	0.036	U	PCI/G
9 B	09/14/19	Europium-155	0.0491	0.0384	0.0531	U	PCI/G
9 B	09/14/19	Holmium-166m	-0.00037	0.0105	0.0186	Ū	PCI/G
9 B	09/14/19	Lead-210	1.68	2.98	5.12	<u> </u>	PCI/G
) D 0 P	00/14/10	Lead-210	0.022	0.0202	0.0207	0	PCI/G
9 D	09/14/19	Lead-212	0.932	0.0293	0.0207		
9 D	09/14/19	Lead-214	1.52	0.0497	0.0240	TT	PCI/G
9 B	09/14/19	Neptunium-239	0.00423	0.0756	0.123	<u> </u>	PCI/G
9 B	09/14/19	Niobium-94	0.00262	0.0059	0.0106	U	PCI/G
9 B	09/14/19	Potassium-40	13.9	0.337	0.0968		PCI/G
9 B	09/14/19	Promethium-147	10.6	214	348	U	PCI/G
9 B	09/14/19	Protactinium-231	0	0.148	0.163	UI	PCI/G
9 B	09/14/19	Radium-226	1.29	0.0441	0.0212		PCI/G
9 B	09/14/19	Radium-228	0.955	0.0727	0.0412		PCI/G
9 B	09/14/19	Sodium-22	-0.00166	0.0123	0.0128	U	PCI/G
9 B	09/14/19	Tellurium-125m	2.61	4.71	6.29	U	PCI/G
9 B	09/14/19	Thallium-208	0.271	0.0164	0.0113		PCI/G
9 B	09/14/19	Thorium-231	-0.00496	0.146	0.224	U	PCI/G
9 B	09/14/19	Thorium-234	1.04	0.979	0.957	_	PCI/G
9 B	09/14/19	Thulium-171	5.28	12	20.4	IJ	PCI/G
0 P	00/14/10	Tin 126	5.20	0.0424	0.0477		PCI/G
9 D 0 R	00/20/10	International 120	0,0222	0.0424	0.04//	11	PCI/G
9 D	09/30/19	T 1 (00	0.0232	0.446	0.627	<u> </u>	PCI/G
9 B	09/24/19	Technetium-99	-0.203	0.375	0.644	<u> </u>	PCI/G
9 B	09/24/19	Strontium-90	0.00735	0.00646	0.0107	U	PCI/G
9 B	09/24/19	Yttrium-90	0.00735	0.00646	0.0107	U	PCI/G
9 B	09/27/19	Nickel-63	0.0642	0.299	0.509	U	PCI/G
9 B	09/29/19	Iron-55	3.08	2.47	3.62	U	PCI/G
9 B	09/27/19	Tritium	0.698	2.08	3.58	U	PCI/G
9 B	09/26/19	Carbon-14	0.716	1.44	2.47	U	PCI/G
9 B	09/26/19	Nickel-59	0.431	0.906	1.72	U	PCI/G
9 B	10/03/19	Americium-241	0.0185	0.0203	0.0262	U	PCI/G
9 B	10/03/19	Americium-243	-0.0131	0.0232	0.0524	U	PCI/G
9 B	10/03/19	Curium-243/244	-0.0000736	0.0149	0.0322	U	PCI/G
9 B	10/03/19	Curium-245/246	0.00366	0.0141	0.0261	Ū	PCI/G
90	09/30/19	Polonium-210	0.885	0.27	0.159	0	PCI/G
90	09/29/19	Thorium-228	0.605	0.157	0.135		PCI/G
90	09/29/19	Thorium 220	0.071	0.157	0.022	T I	PCI/G
90	09/29/19	Thomas 220	0.0003	0.0391	0.0655	0	
90	09/29/19	Thorium-230	2.03	0.245	0.0575		PCI/G
90	09/29/19	1 norium-232	0.607	0.135	0.0574	* *	PCI/G
9 C	09/29/19	Uranium-232	-0.00448	0.0362	0.0724	U	PCI/G
9 C	09/29/19	Uranium-233/234	1.09	0.124	0.0438		PCI/G
9 C	09/29/19	Uranium-235/236	0.136	0.0494	0.0478		PCI/G
9 C	09/29/19	Uranium-238	1.07	0.122	0.0393		PCI/G
9 C	09/30/19	Neptunium-236	-0.00485	0.00911	0.024	U	PCI/G
9 C	09/30/19	Plutonium-236	-0.00485	0.00911	0.024	U	PCI/G
9 C	09/30/19	Plutonium-239/240	0.0137	0.0165	0.0256	U	PCI/G
9 C	09/30/19	Plutonium-242	-0.00506	0.0111	0.0233	U	PCI/G
9 C	09/30/19	Plutonium-244	0.00575	0.00959	0.0135	U	PCI/G
9 C	09/30/19	Neptunium-237	-0.007	0.00641	0.0214	U	PCI/G
9 C	10/02/19	Plutonium-241	0.0484	2.43	4.18	Ū	PCJ/G
9 C	09/14/19	Actinium-225	-0.265	0 779	1 36	U	PCI/G
90	09/14/19	Actinium-227	0.0073	0.7754	0 101	<u> </u>	PCI/G
9 C	00/14/10	Actinium 220	0.0273	0.0734	0.101	0	DCI/G
9 C	09/14/19	Antimory 125	0.938	0.00/4	0.0429	ΤT	PCI/C
90	09/14/19	Anumony-125	0.0233	0.0188	0.0331	U	PCI/G
90	09/14/19	Barium-13/m	0.0565	0.011	0.0107		PCI/G
9 C	09/14/19	Bismuth-212	0.89	0.181	0.149		PCI/G
9 C	09/14/19	Bismuth-213	0.012	0.0202	0.0349	U	PCI/G
9 C	09/14/19	Bismuth-214	1.34	0.0432	0.0207		PCI/G
9 C	09/14/19	Cesium-134	0	0.012	0.0161	UI	PCI/G
9 C	09/14/19	Cesium-137	0.0597	0.0116	0.0113		PCI/G

Table B-1. Complete Results from the GEL Laboratory

	I abi	e B-1. Complete	Results from	the GEL La	aborator	у	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
9 C	09/14/19	Cobalt-60	0.00835	0.0114	0.0122	U	PCI/G
9 C	09/14/19	Europium-152	0.00345	0.0196	0.0339	U	PCI/G
9 C	09/14/19	Europium-154	-0.00803	0.0264	0.0385	U	PCI/G
9 C	09/14/19	Europium-155	0	0.045	0.0476	UI	PCI/G
9 C	09/14/19	Holmium-166m	0.00208	0.0103	0.0184	U	PCI/G
9 C	09/14/19	Lead-210	2.9	2.29	4.01	U	PCI/G
9 C	09/14/19	Lead-212	0.924	0.0276	0.022		PCI/G
9 C	09/14/19	Lead-214	1.6	0.0492	0.0857		PCI/G
9 C	09/14/19	Neptunium-239	0.0629	0.0901	0.119	U	PCI/G
9 C	09/14/19	Niobium-94	0.000356	0.00601	0.0107	U	PCI/G
9 C	09/14/19	Potassium-40	13.5	0.35	0.101		PCI/G
9 C	09/14/19	Promethium-147	-45.5	210	343	U	PCI/G
9 C	09/14/19	Protactinium-231	0	0.151	0.168	UI	PCI/G
9 C	09/14/19	Radium-226	1.34	0.0432	0.0207		PCI/G
9 C	09/14/19	Radium-228	0.938	0.0674	0.0429		PCI/G
9 C	09/14/19	Sodium-22	-0.00476	0.00956	0.0137	U	PCI/G
9 C	09/14/19	Tellurium-125m	1.8	3.98	6.02	U	PCI/G
9 C	09/14/19	Thallium-208	0.265	0.0175	0.0118		PCI/G
9 C	09/14/19	Thorium-231	0.105	0.15	0.238	U	PCI/G
9 C	09/14/19	Thorium-234	1.29	0.757	0.824	_	PCI/G
9 C	09/14/19	Thulium-171	-3.39	9.34	15.8	U	PCI/G
90	09/14/19	Tin-126	0	0.0334	0.0342	UI UI	PCI/G
9 C	09/30/19	Iodine-129	0	0.236	0.503	U	PCI/G
9 C	09/24/19	Technetium-99	-0 319	0.358	0.505	U	PCI/G
90	09/25/19	Strontium-90	-0.00217	0.00679	0.0119	<u> </u>	PCI/G
9 C	09/25/19	Yttrium-90	-0.00217	0.00679	0.0119	<u>U</u>	PCI/G
90	09/27/19	Nickel-63	-0.0256	0.00075	0.473	<u> </u>	PCI/G
90	09/29/19	Iron-55	1 32	2.28	3 38	U	PCI/G
9 C	09/27/19	Tritium	0.682	2.26	3 54	U	PCI/G
9 C	09/26/19	Carbon-14	1.04	1 43	2 42	<u>U</u>	PCI/G
90	09/26/19	Nickel-59	-0.41	1.43	2.42	<u> </u>	PCI/G
90	10/03/19	Americium-241	0.111	0.0146	0.0186	<u> </u>	PCI/G
90	10/03/19	Americium-243	0.00674	0.0255	0.0188	<u> </u>	PCI/G
90	10/03/19	Curium-243/244	0.00674	0.0233	0.0221	<u> </u>	PCI/G
90	10/03/19	Curium-245/246	0.00812	0.0134	0.0221	<u> </u>	PCI/G
	09/25/19	Americium-240	108	2.06	1 22	0	0/0
	09/25/19	Cesium-137	113	0.332	0.101		0/0
LCS	09/25/19	Cobalt-60	107	0.552	0.0542		0/0
	09/30/19	Polonium-210	109	1 29	0.0342		0/0
LCS	09/29/19	Thorium-230	94.3	0.406	0.0938		0/0
LCS	09/30/19	Uranium-238	95.9	0.166	0.011		0/0
LCS	09/28/19	Plutonium-239/240	101	0.0547	0.00958		%
	09/30/19	Nentunium-237	116	0.0547	0.0471		0/0
LCS	10/03/19	Plutonium-241	106	3 45	3.03		0/0
	10/02/19	Polonium-210	88.7	0 708	0.0809		0/0
	10/02/19	Polonium-210	88.7	0.708	0.0809		0/0
	10/02/19	Thorium-230	90.4	0.765	0.0005		0/0
	10/02/19	Thorium-230	90.4	0.465	0.116		0/0
	10/01/19	Uranium-238	98.3	0.405	0.0497		0/0
	10/01/19	Uranium-238	98.3	0.249	0.0497		0/0
	10/01/19	Plutonium-239/240	123	0.0922	0.0427		0/0
LCS	10/01/19	Plutonium-239/240	123	0.0922	0.0129		0/0
LCS	10/02/19	Americium-239/240	01.6	0.0922	0.0129		0/0
	10/02/19	Curium 242/244	91.0	0.0084	0.0143		0/2
	10/02/19	Americium 241	97.0	0.070	0.0118		0/0
	10/02/19	Curium 242/244	91.0	0.0084	0.0143		0/2
	10/02/19	Nentunium 227	97.0	0.070	0.0118		/0
	10/03/19	Neptunium 227	109	0.198	0.0379		/0
	10/05/19	Phytonium 241	109	0.198	0.03/9		/0
	10/06/19	Plutonium 241	90.2	2.7	2.38		/0
11.0.0	110/00/19	1 IUIOIIIUIII=/41		Z., 11	Z. 10		1 70

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
LCS	09/14/19	Americium-241	105	0.61	0.326		%
LCS	09/14/19	Cesium-137	111	0.317	0.0862		%
LCS	09/14/19	Cobalt-60	104	0.275	0.0419		%
LCS	09/30/19	Iodine-129	84.8	2.26	1.01		%
LCS	09/30/19	Iodine-129	84.8	2.26	1.01		%
LCS	09/26/19	Technetium-99	97	1.43	1.12		%
LCS	09/25/19	Strontium-90	110	0.0694	0.0257		%
LCS	09/25/19	Yttrium-90	110	0.0694	0.0257		%
LCS	09/28/19	Nickel-63	88.7	1.91	1.03		%
LCS	09/27/19	Nickel-63	88.9	1.02	0.7		%
LCS	09/25/19	Americium-241	110	2.01	1.27		%
LCS	09/25/19	Cesium-137	113	0.327	0.0952		%
LCS	09/25/19	Cobalt-60	112	0.282	0.0585		%
LCS	09/27/19	Americium-241	113	0.697	0.364		%
LCS	09/27/19	Cesium-137	114	0.353	0.0925		%
LCS	09/27/19	Cobalt-60	111	0.315	0.0647		%
LCS	09/28/19	Iodine-129	90.8	2.08	1.06		%
LCS	09/28/19	Iodine-129	90.8	2.08	1.06		%
LCS	09/29/19	Iodine-129	86.7	1.65	1.18		%
LCS	10/02/19	Polonium-210	94.6	0.628	0.0934		%
LCS	09/30/19	Thorium-230	91.5	0.392	0.0856		%
LCS	09/28/19	Uranium-238	100	0.228	0.0259		%
LCS	09/30/19	Plutonium-239/240	107	0.082	0.0102		%
LCS	10/01/19	Neptunium-237	117	0.168	0.0382		%
LCS	10/04/19	Plutonium-241	103	3.29	2.71		%
LCS	09/28/19	Iron-55	107	2.83	2.68		%
LCS	09/26/19	Iron-55	92.2	2.12	1.99		%
LCS	10/01/19	Iron-55	97.1	2.73	2.6		%
LCS	09/26/19	Iron-55	101	2.13	1.99		%
LCS	09/26/19	Nickel-63	89.7	1.8	1.12		%
LCS	09/29/19	Nickel-63	84.7	0.991	0.739		%
LCS	09/26/19	Technetium-99	81	1.16	0.884		%
LCS	09/26/19	Technetium-99	81	1.16	0.884		%
LCS	09/25/19	Technetium-99	107	0.647	0.602		%
LCS	09/28/19	Tritium	85.2	4.16	3.74		%
LCS	09/28/19	Tritium	94.1	20.8	9		%
LCS	09/28/19	Tritium	94.1	20.8	9		%
LCS	09/27/19	Tritium	82.1	14.9	7.21		%
LCS	09/26/19	Carbon-14	97.1	2.85	2.27		%
LCS	09/28/19	Carbon-14	92.2	3.04	2.51		%
LCS	09/28/19	Carbon-14	92.2	3.04	2.51		%
LCS	09/27/19	Carbon-14	98	3.15	2.87		%
LCS	09/27/19	Nickel-59	76.8	3.38	2.12		%
LCS	09/26/19	Nickel-59	107	3.37	1.61		%
LCS	09/30/19	Nickel-59	76.8	3.23	2		%
LCS	09/26/19	Strontium-90	103	0.0626	0.0175		%
LCS	09/26/19	Yttrium-90	103	0.0626	0.0175		%
LCS	10/02/19	Nickel-59	88.4	3.38	1.11		%
LCS	10/03/19	Strontium-90	113	0.081	0.0294		%
LCS	10/03/19	Yttrium-90	113	0.081	0.0294		%
LCS	10/03/19	Americium-241	96	0 152	0.0328		%
LCS	10/03/19	Curium-243/244	96.5	0.165	0.0303		%
LCS	10/09/19	Strontium-90	86.6	0.105	0.0166		%
LCS	10/09/19	Yttrium-90	86.6	0.0569	0.0166		%
LCS	10/09/19	Strontium-90	86.6	0.0569	0.0166		%
LCS	10/09/19	Vttrium-90	86.6	0.0509	0.0166		%
LCS	10/05/19	Thorium-230	80.0	0.0309	0.101		%
LCS	10/06/19	Americium-241	893	0.0932	0.0171		%
LCS	10/06/19	Curium_243/244	07.5	0.0752	0.0192		0/0
LCS	10/05/19	Americium-241	102	0.105	0.0103		0/0
LCS	10/05/19	Curium-243/244	103	0.113	0.0155		0/0
	10/08/10	Strontium_00	01.5	0.124	0.0203		0/0
LUS	10/00/17	500000000	91.3	0.0097	0.0354		1/0

Table B-1. Complete Results from the GEL Laboratory

	Iadi	e B-1. Complete R	esuits from	the GEL La	iborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
LCS	10/08/19	Yttrium-90	91.5	0.0697	0.0354		%
MB	09/25/19	Actinium-225	0.00925	0.0215	0.0377	U	PCI/G
MB	09/25/19	Actinium-227	0.00101	0.0113	0.0193	U	PCI/G
MB	09/25/19	Actinium-228	0.00536	0.0102	0.0121	U	PCI/G
MB	09/25/19	Antimony-125	-0.00873	0.00748	0.00662	U	PCI/G
MB	09/25/19	Barium-137m	-0.000666	0.00128	0.00223	U	PCI/G
MB	09/25/19	Bismuth-212	0	0.04	0.037	UI	PCI/G
MB	09/25/19	Bismuth-213	0.00129	0.00435	0.00823	U	PCI/G
MB	09/25/19	Bismuth-214	-0.00119	0.00411	0.00662	U	PCI/G
MB	09/25/19	Cesium-134	0.000455	0.00144	0.00277	U	PCI/G
MB	09/25/19	Cesium-137	-0.000704	0.00135	0.00235	U	PCI/G
MB	09/25/19	Cobalt-60	0.000398	0.0014	0.00287	U	PCI/G
MB	09/25/19	Europium-152	0.00167	0.00353	0.00685	U	PCI/G
MB	09/25/19	Europium-154	-0.000618	0.00325	0.00527	U	PCI/G
MB	09/25/19	Europium-155	0.000391	0.00455	0.00799	U	PCI/G
MB	09/25/19	Holmium-166m	0.00134	0.00226	0.00444	<u> </u>	PCI/G
MB	09/25/19	Lead-210	0.145	0.00220	0.423	<u> </u>	PCI/G
MB	09/25/19	Lead-210	0.00115	0.00428	0.00517	<u>U</u>	PCI/G
MD	00/25/10	Lead 212	0.00115	0.00423	0.00517	<u> </u>	PCI/G
MD	09/25/19	Nenturium 220	0.00143	0.00007	0.00083	U	
MD	09/25/19	Nishing 04	0.000/3	0.011/	0.0204	U	PCI/G
MB	09/25/19	N1001um-94	0.000681	0.0014	0.00267	<u> </u>	PCI/G
MB	09/25/19	Potassium-40	0.017	0.0262	0.0236	<u> </u>	PCI/G
MB	09/25/19	Promethium-14/	-3.66	32.4	55.8	<u> </u>	PCI/G
MB	09/25/19	Protactinium-231	-0.00381	0.0188	0.0346	U	PCI/G
MB	09/25/19	Radium-226	-0.00119	0.00411	0.00662	<u> </u>	PCI/G
MB	09/25/19	Radium-228	0.00536	0.0102	0.0121	<u> </u>	PCI/G
MB	09/25/19	Sodium-22	-0.000434	0.00122	0.00186	U	PCI/G
MB	09/25/19	Tellurium-125m	-0.0882	0.433	0.741	U	PCI/G
MB	09/25/19	Thallium-208	-0.00098	0.00199	0.00268	U	PCI/G
MB	09/25/19	Thorium-231	0.00915	0.0243	0.0466	U	PCI/G
MB	09/25/19	Thorium-234	0.149	0.145	0.166	U	PCI/G
MB	09/25/19	Thulium-171	-0.268	1.35	2.04	U	PCI/G
MB	09/25/19	Tin-126	0.00136	0.00364	0.00605	U	PCI/G
MB	09/30/19	Polonium-210	-0.124	0.151	0.397	U	PCI/G
MB	09/29/19	Thorium-228	-0.00489	0.0899	0.17	U	PCI/G
MB	09/29/19	Thorium-229	-0.115	0.0888	0.195	U	PCI/G
MB	09/29/19	Thorium-230	-0.0929	0.0672	0.159	U	PCI/G
MB	09/29/19	Thorium-232	-0.0356	0.0609	0.131	U	PCI/G
MB	09/30/19	Uranium-232	-0.0154	0.0455	0.0876	U	PCI/G
MB	09/30/19	Uranium-233/234	0.0032	0.019	0.0358	U	PCI/G
MB	09/30/19	Uranium-235/236	0.0187	0.0216	0.0329	U	PCI/G
MB	09/30/19	Uranium-238	0.008	0.024	0.0431	U	PCI/G
MB	09/30/19	Neptunium-236	-0.00286	0.00691	0.0177	U	PCI/G
MB	09/30/19	Plutonium-236	-0.00286	0.00691	0.0177	U	PCI/G
MB	09/30/19	Plutonium-239/240	0.00839	0.0104	0.0149	Ū	PCI/G
MB	09/30/19	Plutonium-242	-0.00182	0.00837	0.0168	U	PCI/G
MB	09/30/19	Plutonium-244	0.0103	0.00037	0.0100	<u> </u>	PCI/G
MB	09/30/19	Neptunium-237	-0.00474	0.01	0.0224	<u> </u>	PCI/G
MB	10/03/19	Plutonium-241	0.743	1.9	3 24	<u> </u>	PCI/G
MB	10/02/19	Polonium 210	0.0858	0.0577	0.183	<u> </u>	PCI/G
MD	10/02/19	Polonium 210	-0.0858	0.0577	0.183	U	
MD	10/02/19	Thoring 229	-0.0638	0.0377	0.103		
MD	10/02/19	Thorium 220	0.0/13	0.0744	0.119		PCI/G
MD	10/02/19	The minume 220	0.0243	0.06/3	0.12	U	PCI/G
MB	10/02/19	The minum -230	-0.0121	0.0503	0.103	U	PCI/G
MB	10/02/19	1 norium-232	-0.0241	0.03/4	0.0869	U	PCI/G
MB	10/02/19	Thorium-228	0.0713	0.0744	0.119	<u> </u>	PCI/G
MB	10/02/19	Thorium-229	0.0243	0.0673	0.12	U	PCI/G
MB	10/02/19	Thorium-230	-0.0121	0.0503	0.103	U	PCI/G
MB	10/02/19	Thorium-232	-0.0241	0.0374	0.0869	U	PCI/G
MB	10/01/19	Uranium-232	-0.0288	0.0349	0.0745	U	PCI/G

-14. C 41. CEL I . 1. 1 / D .

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
MB	10/01/19	Uranium-233/234	0.0128	0.0254	0.0438	U	PCI/G
MB	10/01/19	Uranium-235/236	0.0373	0.0218	0.0086		PCI/G
MB	10/01/19	Uranium-238	0.00286	0.0210	0.0383	IJ	PCI/G
MB	10/01/19	Uranium 232	0.00280	0.0202	0.0305	<u> </u>	PCI/G
MB	10/01/19	Uranium 232/234	0.0128	0.0347	0.0/43	<u> </u>	PCI/G
MD	10/01/19		0.0128	0.0234	0.0438	0	
MB	10/01/19	Uranium-235/236	0.0373	0.0218	0.0086	TT	PCI/G
MB	10/01/19	Uranium-238	0.00286	0.0202	0.0383	0	PCI/G
MB	10/01/19	Neptunium-236	-0.000103	0.0161	0.0343	U	PCI/G
MB	10/01/19	Plutonium-236	-0.000103	0.0161	0.0343	U	PCI/G
MB	10/01/19	Plutonium-239/240	0.0136	0.021	0.0343	U	PCI/G
MB	10/01/19	Plutonium-242	-0.00349	0.00869	0.0205	U	PCI/G
MB	10/01/19	Plutonium-244	0.00166	0.0134	0.0273	U	PCI/G
MB	10/01/19	Neptunium-236	-0.000103	0.0161	0.0343	U	PCI/G
MB	10/01/19	Plutonium-236	-0.000103	0.0161	0.0343	U	PCI/G
MB	10/01/19	Plutonium-239/240	0.0136	0.021	0.0343	U	PCI/G
MB	10/01/19	Plutonium-242	-0.00349	0.00869	0.0205	Ū	PCI/G
MB	10/01/19	Plutonium-244	0.00166	0.0134	0.0273	U	PCI/G
MB	10/01/19	Americium-241	0.00100	0.0134	0.0275	<u> </u>	PCI/G
MD	10/02/19	Americium 242	0.00000	0.00922	0.0149	<u> </u>	
	10/02/19	Americium-243	-0.00904	0.0101	0.023		PCI/G
MB	10/02/19	Curium-243/244	-0.000681	0.00451	0.0105	0	PCI/G
MB	10/02/19	Curium-245/246	0.0028	0.00689	0.011	U	PCI/G
MB	10/02/19	Americium-241	0.00666	0.00922	0.0149	U	PCI/G
MB	10/02/19	Americium-243	-0.00904	0.0101	0.025	U	PCI/G
MB	10/02/19	Curium-243/244	-0.000681	0.00451	0.0105	U	PCI/G
MB	10/02/19	Curium-245/246	0.0028	0.00689	0.011	U	PCI/G
MB	10/03/19	Neptunium-237	-0.00942	0.00983	0.034	U	PCI/G
MB	10/03/19	Neptunium-237	-0.00942	0.00983	0.034	U	PCI/G
MB	10/06/19	Plutonium-241	-1.73	2.96	5.17	U	PCI/G
MB	10/06/19	Plutonium-241	-1.73	2.96	5.17	U	PCI/G
MB	09/14/19	Actinium-225	0.00347	0.00599	0.0102	Ū	PCI/G
MB	09/14/19	Actinium-227	-0.00426	0.00599	0.0102	<u> </u>	PCI/G
MD	00/14/10	Actinium 229	-0.00420	0.00001	0.0074	<u>U</u>	PCI/G
MD	09/14/19	Actimum-228	0.00172	0.00391	0.0074	U	PCI/G
	09/14/19	Anumony-125	-0.00130	0.00212	0.00369	<u> </u>	PCI/G
MB	09/14/19	Barium-13/m	0.000465	0.000829	0.00152	U	PCI/G
MB	09/14/19	Bismuth-212	-0.00187	0.0198	0.0206	<u> </u>	PCI/G
MB	09/14/19	Bismuth-213	0.000392	0.00241	0.00438	U	PCI/G
MB	09/14/19	Bismuth-214	0.00023	0.00447	0.00318	U	PCI/G
MB	09/14/19	Cesium-134	0.000164	0.000895	0.00161	U	PCI/G
MB	09/14/19	Cesium-137	0.000491	0.000876	0.00161	U	PCI/G
MB	09/14/19	Cobalt-60	-0.0000373	0.000839	0.00157	U	PCI/G
MB	09/14/19	Europium-152	0.0000892	0.00243	0.0044	U	PCI/G
MB	09/14/19	Europium-154	-0.000499	0.00263	0.00449	U	PCI/G
MB	09/14/19	Europium-155	-0.000984	0.00289	0.00485	U	PCI/G
MB	09/14/19	Holmium-166m	-0.000448	0.0014	0.00243	U	PCI/G
MB	09/14/19	Lead-210	0.0327	0.405	0.243	U	PCI/G
MB	09/14/19	Lead-212	-0.000982	0.00237	0.00291	U	PCI/G
MB	09/14/19	Lead-214	0.000962	0.00237	0.00375	 	PCI/G
MB	09/14/10	Nentunium 220	0.000909	0.00450	0.00373	<u> </u>	PCI/G
MD	00/14/10	Nichium 04	0.00295	0.00739	0.0121	U	DCI/C
MB	09/14/19	N1001um-94	-0.000215	0.000806	0.0014	<u> </u>	PCI/G
MB	09/14/19	rotassium-40	-0.0163	0.0185	0.0242	U	rUl/G
MB	09/14/19	Promethium-147	-1.86	19.7	33.3	U	PCI/G
MB	09/14/19	Protactinium-231	-0.00488	0.0113	0.0201	U	PCI/G
MB	09/14/19	Radium-226	0.00023	0.00447	0.00318	U	PCI/G
MB	09/14/19	Radium-228	0.00172	0.00891	0.0074	U	PCI/G
MB	09/14/19	Sodium-22	0.000207	0.000906	0.00161	U	PCI/G
MB	09/14/19	Tellurium-125m	-0.0492	0.241	0.376	U	PCI/G
MB	09/14/19	Thallium-208	0.000223	0.00199	0.00142	U	PCI/G
MB	09/14/19	Thorium-231	-0.00181	0.0167	0.0271	U	PCI/G
MB	09/14/19	Thorium-234	0.0221	0.0978	0.0685	- U	PCI/G
MB	09/14/19	Thulium-171	_1 03	1 02	1 14	 	PCI/G
MB	00/14/10	Tin 126	-1.03	0.00207	0.00252	U	PCI/G
MD	00/20/10	Interna 120	-0.000170	0.00207	0.00332		PCI/C
INIB	109/30/19	1001ne-129	0.288	0.492	0.932	U	TUI/U

Table B-1. Complete Results from the GEL Laboratory

		e B-I. Complete	Results from	the GEL La	aborator	y	
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
MB	09/30/19	Iodine-129	0.288	0.492	0.932	U	PCI/G
MB	09/25/19	Technetium-99	0.0693	0.297	0.503	U	PCI/G
MB	09/25/19	Strontium-90	-0.00587	0.00783	0.0147	U	PCI/G
MB	09/25/19	Yttrium-90	-0.00587	0.00783	0.0147	U	PCI/G
MB	09/28/19	Nickel-63	-0.192	0.272	0.472	U	PCI/G
MB	09/27/19	Nickel-63	0.493	0.426	0.711	U	PCI/G
MB	09/26/19	Actinium-225	-0.00142	0.0198	0.0365	U	PCI/G
MB	09/26/19	Actinium-227	0.00437	0.0127	0.0239	U	PCI/G
MB	09/26/19	Actinium-228	0.0153	0.0147	0.0181	U	PCI/G
MB	09/26/19	Antimony-125	-0.0029	0.00458	0.00774	U	PCI/G
MB	09/26/19	Barium-137m	-0.000358	0.00177	0.0029	U	PCI/G
MB	09/26/19	Bismuth-212	0.00447	0.0257	0.0493	U	PCI/G
MB	09/26/19	Bismuth-213	-0.00338	0.00573	0.0097	U	PCI/G
MB	09/26/19	Bismuth-214	0.00550	0.00826	0.00592	<u> </u>	PCI/G
MB	09/26/19	Cesium-134	-0.000351	0.00020	0.00322	U	PCI/G
MB	09/26/19	Cesium-137	-0.000378	0.00172	0.00306	<u> </u>	PCI/G
MB	09/26/19	Cobalt-60	0.000378	0.00180	0.00306	<u> </u>	PCI/G
MB	09/26/19	Europium-152	-0.000776	0.00169	0.00370	U	PCI/G
MB	09/26/19	Europium 154	0.00407	0.00402	0.00343	U	PCI/G
MD	09/20/19	Europium-154	0.00407	0.00527	0.0112	U	PCI/G
	09/20/19	Lalmium 166m	-0.000373	0.00349	0.00944	<u> </u>	PCI/G
	09/20/19		0.001/2	0.00290	0.00382	U	PCI/G
MB	09/26/19	Lead-210	0.282	0.495	0.927	<u> </u>	PCI/G
MB	09/26/19	Lead-212	0.000526	0.00538	0.00714	<u> </u>	PCI/G
MB	09/26/19	Lead-214	0.00242	0.00618	0.00758	<u> </u>	PCI/G
MB	09/26/19	Neptunium-239	0.00507	0.0136	0.0241	<u> </u>	PCI/G
MB	09/26/19	Niobium-94	0.00102	0.00168	0.00336	<u> </u>	PCI/G
MB	09/26/19	Potassium-40	-0.00554	0.0265	0.0476	<u> </u>	PCI/G
MB	09/26/19	Promethium-147	21.8	38.7	69.5	U	PCI/G
MB	09/26/19	Protactinium-231	0.00205	0.0245	0.0449	U	PCI/G
MB	09/26/19	Radium-226	0	0.00826	0.00592	UI	PCI/G
MB	09/26/19	Radium-228	0.0153	0.0147	0.0181	U	PCI/G
MB	09/26/19	Sodium-22	0.000944	0.00198	0.00401	U	PCI/G
MB	09/26/19	Tellurium-125m	-0.0422	0.518	0.886	U	PCI/G
MB	09/26/19	Thallium-208	0.00128	0.00415	0.00295	U	PCI/G
MB	09/26/19	Thorium-231	-0.0069	0.0312	0.056	U	PCI/G
MB	09/26/19	Thorium-234	0.0229	0.197	0.15	U	PCI/G
MB	09/26/19	Thulium-171	1.55	3.75	3.39	U	PCI/G
MB	09/26/19	Tin-126	0.00125	0.00437	0.00722	U	PCI/G
MB	09/27/19	Actinium-225	0.00365	0.0165	0.0285	U	PCI/G
MB	09/27/19	Actinium-227	0.0029	0.0113	0.0195	U	PCI/G
MB	09/27/19	Actinium-228	0.0048	0.00841	0.0115	U	PCI/G
MB	09/27/19	Antimony-125	-0.00655	0.00709	0.00634	U	PCI/G
MB	09/27/19	Barium-137m	-0.000402	0.00133	0.00236	U	PCI/G
MB	09/27/19	Bismuth-212	0.00506	0.0221	0.0372	U	PCI/G
MB	09/27/19	Bismuth-213	-0.00156	0.00377	0.00677	U	PCI/G
MB	09/27/19	Bismuth-214	0.00202	0.00733	0.00616	U	PCI/G
MB	09/27/19	Cesium-134	0.000549	0.0015	0.00287	U	PCI/G
MB	09/27/19	Cesium-137	-0.000425	0.0014	0.0025	U	PCI/G
MB	09/27/19	Cobalt-60	-0.0000658	0.00138	0.00269	U	PCI/G
MB	09/27/19	Europium-152	-0.00184	0.00367	0.00659	U	PCI/G
MB	09/27/19	Europium-154	-0.0027	0.00413	0.00626	U	PCI/G
MB	09/27/19	Europium-155	0.000257	0.00434	0.0076	U	PCI/G
MB	09/27/19	Holmium-166m	-0.0012	0.00211	0.00364	U	PCI/G
MB	09/27/19	Lead-210	0.25	0.482	0.404	U	PCI/G
MB	09/27/19	Lead-212	-0.0018	0.00324	0.0046	Ū	PCI/G
MB	09/27/19	Lead-214	-0.00196	0.00376	0.00527	Ū	PCI/G
MB	09/27/19	Neptunium-239	0.00122	0.0117	0.0203	U	PCI/G
MB	09/27/19	Niobium-94	2 47F-06	0.00134	0.00244	U	PCI/G
MB	09/27/19	Potassium-40	0.00887	0 0245	0.0221	U	PCI/G
MB	09/27/19	Promethium-147	-0 0724	29.8	51.8	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
MB	09/27/19	Protactinium-231	-0.0025	0.0175	0.0324	U	PCI/G
MB	09/27/19	Radium-226	0.00202	0.00733	0.00616	U	PCI/G
MB	09/27/19	Radium-228	0.0048	0.00841	0.0115	U	PCI/G
MB	09/27/19	Sodium-22	-0.00119	0.00148	0.00215	Ū	PCI/G
MB	09/27/19	Tellurium-125m	-0.0902	0 385	0.66	U	PCI/G
MB	09/27/19	Thallium-208	-0.000631	0.00206	0.00295	U	PCI/G
MB	09/27/19	Thorium-231	-0.00031	0.00200	0.00275	<u> </u>	PCI/G
MD	00/27/10	Thorium 224	0.0522	0.0225	0.156	<u> </u>	PCI/G
MP	09/27/19	Thulium 171	0.0323	1.20	0.150	U	PCI/G
MD	09/27/19		-0.393	0.00246	0.00545	U	
MB	09/27/19	11n-126	-0.00108	0.00346	0.00345	<u> </u>	PCI/G
MB	09/28/19	Iodine-129	0.22	0.486	0.904	0	PCI/G
MB	09/28/19	Iodine-129	0.22	0.486	0.904	U	PCI/G
MB	09/29/19	Iodine-129	0.293	0.313	0.73	U	PCI/G
MB	10/02/19	Polonium-210	-0.00874	0.0413	0.0934	U	PCI/G
MB	09/30/19	Thorium-228	0.0914	0.069	0.102	U	PCI/G
MB	09/30/19	Thorium-229	0.076	0.0543	0.0728		PCI/G
MB	09/30/19	Thorium-230	0.0217	0.0541	0.0959	U	PCI/G
MB	09/30/19	Thorium-232	0.0108	0.0299	0.0517	U	PCI/G
MB	09/28/19	Uranium-232	0.00571	0.0447	0.0813	U	PCI/G
MB	09/28/19	Uranium-233/234	0.00219	0.0216	0.0413	U	PCI/G
MB	09/28/19	Uranium-235/236	0.0288	0.0226	0.0276		PCI/G
MB	09/28/19	Uranium-238	-0.00574	0.0251	0.0508	U	PCI/G
MB	10/01/19	Neptunium-236	-0.00091	0.00723	0.0163	U	PCI/G
MB	10/01/19	Plutonium-236	-0.00091	0.00723	0.0163	U	PCI/G
MB	10/01/19	Plutonium-239/240	0.000822	0.00725	0.0163	<u>U</u>	PCI/G
MB	10/01/19	Plutonium-242	-0.0138	0.00969	0.0105	<u> </u>	PCI/G
MB	10/01/19	Plutonium 244	0.00432	0.0070	0.0271	<u> </u>	PCI/G
MD	10/01/19	Nontunium 227	0.00432	0.0072	0.0102	<u> </u>	PCI/G
MD	10/01/19	Distanium 241	0.00113	0.0118	2.01	U	PCI/G
MB	10/04/19	Plutonium-241	0.556	1./	2.91	<u> </u>	PCI/G
MB	09/28/19	Iron-55	-0.308	1.99	2.88	<u> </u>	PCI/G
MB	09/26/19	Iron-55	1.04	1.55	2.18	0	PCI/G
MB	09/30/19	Iron-55	-0.918	1.6	2.32	<u> </u>	PCI/G
MB	09/26/19	Iron-55	0.595	1.49	2.14	U	PCI/G
MB	09/26/19	Nickel-63	-0.000638	0.393	0.675	U	PCI/G
MB	09/28/19	Nickel-63	0.192	0.423	0.719	U	PCI/G
MB	09/26/19	Technetium-99	-0.00322	0.24	0.409	U	PCI/G
MB	09/26/19	Technetium-99	-0.00322	0.24	0.409	U	PCI/G
MB	09/25/19	Technetium-99	0.163	0.333	0.562	U	PCI/G
MB	09/28/19	Tritium	2.52	2.14	3.54	U	PCI/G
MB	09/28/19	Tritium	-0.313	2.03	3.7	U	PCI/G
MB	09/28/19	Tritium	-0.313	2.03	3.7	U	PCI/G
MB	09/27/19	Tritium	-1.01	2.03	3.82	U	PCI/G
MB	09/26/19	Carbon-14	1.02	1.35	2.28	U	PCI/G
MB	09/28/19	Carbon-14	0.579	1.45	2.49	U	PCI/G
MB	09/28/19	Carbon-14	0.579	1.45	2.49	U	PCI/G
MB	09/27/19	Carbon-14	1.25	1.71	2.9	U	PCI/G
MB	09/27/19	Nickel-59	-0 294	0 307	0 457	U	PCI/G
MB	09/26/19	Nickel-59	-0.0604	0.363	0 764	U	PCI/G
MB	09/30/19	Nickel-59	0.0004	0.505	1 22	<u>U</u>	PCI/G
MB	09/26/10	Strontium_00	_0.00324	0.00	0.00742	U	PCI/G
MB	00/26/10	Vttrium 00	0.00324	0.00412	0.00742	U 11	PCI/G
MD	10/02/19	Niekol 50	-0.00324	0.00412	0.00742		PCI/C
	10/02/19	Streating 00	0.723	0.774	0.90	U 11	PCI/G
	10/05/19	Strontium-90	-0.00226	0.00787	0.0148	U	PCI/G
MB	10/05/19	Y ttrium-90	-0.00226	0.00787	0.0148	U	PCI/G
MB	10/03/19	Americium-241	0.00863	0.0136	0.0204	U	PCI/G
MB	10/03/19	Americium-243	0.00833	0.0163	0.0281	U	PCI/G
MB	10/03/19	Curium-243/244	-0.00287	0.00741	0.0201	U	PCI/G
MB	10/03/19	Curium-245/246	0.00652	0.0115	0.00977	U	PCI/G
MB	10/07/19	Strontium-90	-0.0174	0.00708	0.0142	U	PCI/G
MB	10/07/19	Yttrium-90	-0.0174	0.00708	0.0142	U	PCI/G
MB	10/07/19	Strontium-90	-0.0174	0.00708	0.0142	U	PCI/G
MB	10/07/19	Yttrium-90	-0.0174	0.00708	0.0142	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC ^a	Qualifier ^b	Units
MB	10/05/19	Thorium-228	0.0217	0.0874	0.16	U	PCI/G
MB	10/05/19	Thorium-229	-0.0516	0.079	0.17	U	PCI/G
MB	10/05/19	Thorium-230	0.0514	0.0582	0.0821	U	PCI/G
MB	10/05/19	Thorium-232	0.00855	0.0375	0.0654	U	PCI/G
MB	10/06/19	Americium-241	0.00145	0.00637	0.0111	U	PCI/G
MB	10/06/19	Americium-243	-0.00875	0.0157	0.0335	U	PCI/G
MB	10/06/19	Curium-243/244	2.39E-10	0.00561	0.011	U	PCI/G
MB	10/06/19	Curium-245/246	0.00407	0.00976	0.0156	U	PCI/G
MB	10/05/19	Americium-241	0.00208	0.0122	0.023	U	PCI/G
MB	10/05/19	Americium-243	-0.00157	0.0141	0.0278	U	PCI/G
MB	10/05/19	Curium-243/244	0	0.00568	0.00615	U	PCI/G
MB	10/05/19	Curium-245/246	0	0.00506	0.00547	U	PCI/G
MB	10/08/19	Strontium-90	-0.0121	0.00604	0.0113	U	PCI/G
MB	10/08/19	Yttrium-90	-0.0121	0.00604	0.0113	U	PCI/G

Table B-1. Complete Results from the GEL Laboratory

MB = Method blank

LCS = Laboratory control sample

^a Minimum detectable concentration

^b Qualifier flag:

U = Analyte was analyzed for, but not detected above, the MDL, MDA, MDC, or LOD.

UI = Gamma Spectroscopy – uncertain identification.

X = Consult case narrative (see Table B-2).

Sample no.	Analysis_date	Radionuclide	Case Narative
11 C	09/30/19	Plutonium-244	Pu-244 result may be biased high due to tailing from the Pu-242 tracer ROI
16 B	10/06/19	Curium-245/246	Result may be biased high due to the zero Cm-245/246 background of the detector biasing the MDC low
16 C	10/06/19	Curium-245/246	Result may be biased high due to the zero Cm-245/246 background of the detector biasing the MDC low
3 A	09/30/19	Plutonium-244	Pu-244 result may be biased high due to tailing from the Pu-242 tracer ROI
3 C	09/30/19	Plutonium-244	Pu-244 result may be biased high due to tailing from the Pu-242 tracer ROI
4 A	10/01/19	Plutonium-244	Pu-244 result may be biased high due to tailing from the Pu-242 tracer ROI
4 A	10/05/19	Americium-243	Result may be biased high due to the zero Am-243 background of the detector biasing the MDC low
4 B	10/05/19	Curium-245/246	Result may be biased high due to the zero Cm-245/246 background of the detector biasing the MDC low
5 A	10/02/19	Plutonium-244	Pu-244 result may be biased high due to tailing from the Pu-242 tracer ROI
5 C	10/01/19	Plutonium-244	Pu-244 result may be biased high due to tailing from the Pu-242 tracer ROI

Table B-2. Case Narrative Description for GEL Samples with X Qualifier

B-64	
-------------	--

I able .	b-5. Compi	ete Kesuits II oli	I CSI AIIICI N	La Laburan	JI Y 101 S	ampie	2 spn
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC	Qualifier	Units
2A-S	9/23/19	Pu-242	0.00501	0.0142	0.0277	U	pCi/g
2A-S	10/1/19	Bismuth-212	1.55	0.237	0.212		pCi/g
2A-S	10/1/19	Bismuth-214	1.38	0.148	0.0312		pCi/g
2A-S	10/1/19	Cesium-134	0.00391	0.00424	0.0371	U	pCi/g
2A-S	10/1/19	Cesium-137	0.0713	0.0197	0.0194		pCi/g
2A-S	10/1/19	Cobalt-60	-0.0169	0.00846	0.0251	U	pCi/g
2A-S	10/1/19	Europium-152	0.00994	0.0178	0.068	U	nCi/g
2A-S	10/1/19	Europium-154	0.0219	0.0301	0.0426	0	pCi/g
2A-S	10/1/19	Europium-155	0 111	0.0474	0.0589		nCi/g
24-5	10/1/19	Lead-210	1 29	0.605	0 791		pCi/g
2A-5 2A-S	10/1/19	Lead-210	1.29	0.005	0.0322		pCi/g
2A-5 2A-5	10/1/19	Lead 214	1.55	0.154	0.0322		pCi/g
2A-5	10/1/19	Nentunium 237	1.40	0.134	0.0383	UG	pCi/g
2A-5	10/1/19	Nichium 04	0.00107	0.328	0.0228	U U	pCi/g
2A-5	10/1/19	Potossium 40	0.00197	0.0203	0.0228	0	pCi/g
2A-5	10/1/19	Protostinium 221	20.3	2.14	1.25	τī	pCI/g
2A-5	10/1/19	Protacunium-231	-0.258	0.758	1.25	U	pC1/g
2A-5	10/1/19	Radium-224	1.39	0.171	0.0322		pCI/g
2A-8	10/1/19	Radium-226	1.38	0.148	0.0312		pCi/g
2A-8	10/1/19	Radium-228	1.46	0.162	0.066		pCi/g
2A-S	10/1/19	Sodium-22	0.014	0.015	0.0245		pCı/g
2A-S	10/1/19	Thallium-208	0.508	0.0588	0.0214		pCı/g
2A-S	10/1/19	Thorium-231	0.0748	0.0901	0.115		pC1/g
2A-S	10/1/19	Thorium-234	1.09	0.258	0.361		pC1/g
2A-S	9/18/19	H-3	-0.107	0.133	0.243	U	pCi/g
2A-S	9/6/19	Percent Moisture	1.8		0.1		%
2A-S	9/6/19	Percent Solids	98.2		0.1		%
2A-S	9/20/19	Sr-90	0.178	0.162	0.262		pCi/g
2A-S	10/16/19	Fe-55	-0.119	1.37	2.36	U	pCi/g
2A-S	10/16/19	Ni-59	0.273	1.06	1.72	U	pCi/g
2A-S	10/16/19	Ni-63	0.791	1.16	1.91	U	pCi/g
2A-S	10/9/19	Pu-241	1.65	1.39	2.28		pCi/g
2A-S	10/2/19	Tc-99	-0.239	0.181	0.312	U	pCi/g
2B-S	9/23/19	Pu-242	0.00735	0.011	0.0187		pCi/g
2B-S	9/23/19	Np-237	0.00491	0.012	0.0235	U	pCi/g
2B-S	9/23/19	Am-243	0.0136	0.0137	0.0102		pCi/g
2B-S	9/23/19	Cm-245/246	0.00342	0.00685	0.0103	U	pCi/g
2B-S	9/23/19	Cm-247/248	0.0141	0.0173	0.027		pCi/g
2B-S	9/23/19	Th-229	0	0.0282	0.0563	U	pCi/g
2B-S	9/24/19	U-233/U-234	1.01	0.178	0.0569		pCi/g
2B-S	9/24/19	U-235/U-236	0.0222	0.0392	0.0709	U	pCi/g
2B-S	9/24/19	U-238	1.05	0.182	0.0454		pCi/g
2B-S	9/24/19	Am-241	0.0133	0.0134	0.00999		pCi/g
2B-S	9/24/19	Cm-242	0	0.00653	0.00979	U	pCi/g
2B-S	9/24/19	Cm-243/244	-0.00326	0.00654	0.025	U	pCi/g
2B-S	9/24/19	Th-227	0.126	0.059	0.02		pCi/g
2B-S	9/24/19	Th-228	1.3	0.179	0.0532		nCi/g
2B-S	9/24/19	Th-230	0.957	0.152	0.0761		pCi/g
2B-S	9/24/19	Th-232	1 23	0.169	0.0273		nCi/g
2B-S	9/24/19	Pu-236	-0.00962	0.00965	0.0275	IJ	pCi/g
2B-S	9/24/19	Pu-244	0.00719	0.00903	0.0270	U	pCi/g
2D-5 2B-S	9/24/19	Pu_239/240	0.00715	0.0032	0.00717		pCi/g
2B-5 2B-S	9/24/19	Pu_239/240	0.0144	0.0137	0.0104	I	pCi/g
20-5 2B-S	7/24/17 10/2/10	Po-210	0.0040	0.0118	0.023	0	pCi/g
20-0 20-0	10/3/17	10-210	0.302	0.0077	0.0229	τī	pCrg
2D-0 2D-0	10/10/19	0-232	-0.0091/	0.0392	0.0739	U	pCl/g
20-3 20-5	9/18/19	U-14 Jadina 120	0.495	0.561	0.918	T.	pCi/g
20-3 20-5	9/2//19	A atimizer 227	-0.23/	0.82	1.5/	U	pCI/g
2B-S	10/1/19	Actinium-227	0.0729	0.0562	0.16	U	pC1/g
2B-S	10/1/19	Actinium-228	1.37	0.149	0.0637		pC1/g
2B-S	10/1/19	Antimony-125	-0.00132	0.0361	0.0441	U	pCı/g
2 B-S	10/1/19	Bismuth-212	1.62	0.261	0.184		pC1/g

Table B-3. Complete Results from Test America Laboratory for Sample 2 Split

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC	Qualifier	Units
2B-S	10/1/19	Bismuth-214	1.28	0.141	0.03		pCi/g
2B-S	10/1/19	Cesium-134	0.000974	0.0015	0.0278	U	pCi/g
2B-S	10/1/19	Cesium-137	0.053	0.0119	0.0149		pCi/g
2B-S	10/1/19	Cobalt-60	-0.00389	0.0297	0.02	U	pCi/g
2B-S	10/1/19	Europium-152	0.0182	0.0363	0.0441	U	pCi/g
2B-S	10/1/19	Europium-154	0.0281	0.0384	0.03		pCi/g
2B-S	10/1/19	Europium-155	0.0883	0.0311	0.0387		pCi/g
2B-S	10/1/19	Lead-210	1.25	0.282	0.301		nCi/g
2B-S	10/1/19	Lead-212	1.48	0.194	0.0274		pCi/g
2B-S	10/1/19	Lead-214	1 38	0 149	0.0347		nCi/g
2B-S	10/1/19	Neptunium-237	0.0327	0.189	0.312	U	pCi/g
2B-S	10/1/19	Niobium-94	0.0149	0.0142	0.0161	0	pCi/g
2B-S	10/1/19	Potassium-40	19.6	2 07	0 169		nCi/g
2B-S	10/1/19	Protactinium-231	0	0.105	1.15	U	nCi/g
2B-S	10/1/19	Radium-224	1 48	0.194	0 0274	Ū	pCi/g
2B-S	10/1/19	Radium-226	1.10	0.141	0.0271		pCi/g
2B-S	10/1/19	Radium-228	1.20	0.149	0.0637		pCi/g
2B-S	10/1/19	Sodium-22	0.0164	0.0163	0.0037		pCi/g
2B-S	10/1/19	Thallium-208	0 494	0.0105	0.0175		pCi/g
2B-S	10/1/19	Thorium-231	0.0925	0.0307	0.0743		pCi/g
2B-S	10/1/19	Thorium-234	0.0723	0.161	0.0743		pCi/g
2B-S	9/18/19	H_3	-0.0679	0.138	0.207	IJ	pCi/g
2D-5 2B-5	0/6/10	Percent Moisture	-0.0075	0.156	0.240	0	0/2
2B-S	9/6/19	Percent Solids	97.5		0.1		/0 0/0
2D-5 2B-5	9/0/19	Sr 90	0.213	0.143	0.224		nCi/a
2B-S	10/16/19	51-90 Fe-55	-0.0271	1.5	2.63	IJ	pCi/g
2D-5 2B-5	10/16/19	Ni 50	-0.0271	1.0	1.71	U	pCi/g
2D-5 2B S	10/16/19	Ni 63	0.501	1.08	1.71	0	pCi/g
2D-5 2D S	10/0/19	Du 241	1 65	0.862	1.00		pCi/g
2D-3 2D S	10/9/19	To 00	0.103	0.803	0.279	II	pCi/g
2D-3 2C S	0/22/19	Du 242	-0.103	0.103	0.278	U	pCi/g
20-5	9/23/19	Fu-242	0.0110	0.0202	0.0338	U	pCi/g
20-3	9/23/19	Mp-237	0.00873	0.021	0.039	U	pCi/g
20-5	9/23/19	Am-245 Cm 245/246	-0.00404	0.00809	0.0309	U	pCi/g
20-5	9/23/19	Cm - 243/240 Cm - 247/248	0.00836	0.00811	0.0122	U	pCI/g
20-5	9/23/19	Th 220	0.00830	0.0107	0.032	U	pCi/g
20-3	9/23/19	111-229	-0.0104	0.0121	0.0383	0	pCi/g
20-5	9/24/19	U-235/U-234	0.0462	0.204	0.0994		pCi/g
20-5	9/24/19	U-233/U-230	0.0402	0.049	0.0707	G	pCi/g
20-5	9/24/19	0-238 Am 241	0.044	0.180	0.131	U U	pCi/g
20-3	9/24/19	$\frac{\text{AIII-241}}{\text{Cm} 242}$	0.00303	0.0105	0.0232	U	pCi/g
20-5	9/24/19	Cm^{-242}	-0.00297	0.00595	0.0227	U	pCi/g
20-5	9/24/19	Th 227	0.0764	0.00393	0.00892	0	pCi/g
20-3	9/24/19	Th 228	1.26	0.0441	0.0410		pCi/g
20-3	9/24/19	Th 220	0.850	0.173	0.0407		pCi/g
20-5	9/24/19	Th 222	1.17	0.153	0.004		pCi/g
20-5	9/24/19	111-232 Du 226	1.17	0.134	0.0332	ΤT	pCi/g
20-8	9/24/19	Pu-230	0 00471	0.00946	0.0226	U	pCi/g
20-5	9/24/19	Pu-244	0.004/1	0.0110	0.0220	U	pCI/g
20-8	9/24/19	Pu-239/240	0.00709	0.0125	0.0220	U	pC1/g
20-8	9/24/19	Pu-238	0.00709	0.0157	0.0291	U	pCI/g
20-8	10/3/19	Po-210	0.494	0.0839	0.0419	TT	pCi/g
20-8	10/10/19	0-232	-0.0112	0.0225	0.049/	U	pCI/g
20-8	9/18/19	C-14	1.05	0.577	0.895	τī	pCi/g
20-5	9/2//19	Todine-129	0.256	0.974	1.62	U	pCI/g
2C-S	10/1/19	Actinium-22/	0.0579	0.0952	0.251	U	pCi/g
20-8	10/1/19	Actinium-228	1.56	0.171	0.0614		pCi/g
20-8	10/1/19	Antimony-125	0.0162	0.069	0.0589	U	pCi/g
20-8	10/1/19	Bismuth-212	1.65	0.249	0.217		pCı/g
2C-S	10/1/19	Bismuth-214	1.42	0.156	0.0381		pCı/g
2C-S	10/1/19	Cesium-134	0.0948	0.0237	0.0209		pCi/g
2C-S	10/1/19	Cesium-137	0.0731	0.0236	0.023		pCi/g

Table B-3. Complete Results from Test America Laboratory for Sample 2 Split

Table	D-3. Comple	ete Kesuits II olli	Test Americ	ca Laborato	iy iui c	sample.	2 Spiit
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC	Qualifier	Units
2C-S	10/1/19	Cobalt-60	0.0138	0.0202	0.0209		pCi/g
2C-S	10/1/19	Europium-152	0.0368	0.0359	0.0705		pCi/g
2C-S	10/1/19	Europium-154	0.0155	0.0274	0.0442	U	pCi/g
2C-S	10/1/19	Europium-155	0.138	0.0563	0.0664		pCi/g
2C-S	10/1/19	Lead-210	1.35	0.668	0.856		pCi/g
2C-S	10/1/19	Lead-212	1.71	0.183	0.0305		pCi/g
2C-S	10/1/19	Lead-214	1.54	0.162	0.0425		pCi/g
2C-S	10/1/19	Neptunium-237	0	0.352	0.582	UG	pCi/g
2C-S	10/1/19	Niobium-94	-0.00464	0.0205	0.0244	U	pCi/g
2C-S	10/1/19	Potassium-40	21.1	2.21	0.192		pCi/g
2C-S	10/1/19	Protactinium-231	-0.258	0.975	1.61	U	nCi/g
2C-S	10/1/19	Radium-224	1 71	0.183	0.0305	0	nCi/g
20 S	10/1/19	Radium-226	1.71	0.156	0.0381		pCi/g
2C-S	10/1/19	Radium-228	1.56	0.171	0.0614		pCi/g
2C-5	10/1/19	Sodium 22	0.0171	0.171	0.0014	II	pCi/g
20-5	10/1/19	Thallium 208	-0.0171	0.0139	0.0309	0	pCi/g
20-5	10/1/19	Thannun-200	0.559	0.0039	0.0240		pCi/g
20-5	10/1/19	Thorium 224	0.158	0.0818	0.107		pCI/g
20-5	10/1/19	1 norium-254	0.0204	0.208	0.361	TT	pCI/g
2C-S	9/18/19	H-3	-0.0304	0.141	0.249	U	pC1/g
2C-S	9/6/19	Percent Moisture	3.6		0.1		%
2C-S	9/6/19	Percent Solids	96.4		0.1		%
2C-S	9/20/19	Sr-90	0.041	0.161	0.275	U	pCı/g
2C-S	10/16/19	N1-59	-0.56	0.991	1.7	U	pC1/g
2C-S	10/16/19	Ni-63	0.375	1.09	1.82	U	pCi/g
2C-S	10/16/19	Fe-55	0.259	1.6	2.78	U	pCi/g
2C-S	10/9/19	Pu-241	0.125	0.694	1.18	U	pCi/g
2C-S	10/2/19	Tc-99	-0.0731	0.143	0.243	U	pCi/g
2A-S	9/23/19	Pu-242	0.01104	0.0175	0.0305	U	pCi/g
2A-S	9/23/19	Np-237	0.01106	0.0175	0.0306	U	pCi/g
2A-S	9/23/19	Am-243	-0.007548	0.0107	0.0362	U	pCi/g
2A-S	9/23/19	Cm-245/246	0	0.0107	0.029	U	pCi/g
2A-S	9/23/19	Cm-247/248	-0.003905	0.00782	0.0299	U	pCi/g
2A-S	9/23/19	Th-229	0.03028	0.0216	0.0114		pCi/g
2A-S	9/24/19	U-233/U-234	0.9038	0.185	0.0728		pCi/g
2A-S	9/24/19	U-235/U-236	0.06615	0.0503	0.0284		pCi/g
2A-S	9/24/19	U-238	1.038	0.199	0.058		pCi/g
2A-S	9/24/19	Am-241	0.01882	0.0227	0.0361		pCi/g
2A-S	9/24/19	Cm-242	-0.003686	0.0165	0.0408	U	pCi/g
2A-S	9/24/19	Cm-243/244	-0.003688	0.00739	0.0282	U	pCi/g
2A-S	9/24/19	Th-227	0.1159	0.0584	0.0493		pCi/g
2A-S	9/24/19	Th-228	1.316	0.178	0.052		nCi/g
2A-S	9/24/19	Th-230	1.02	0.156	0.0703		pCi/g
2A-S	9/24/19	Th-232	1.217	0.166	0.0267		nCi/g
24-5	9/24/19	Pu-236	0	0.00758	0.0205	IJ	pCi/g
2A-S	9/24/19	Pu-244	0.01602	0.0152	0.0203	0	nCi/g
2A-S	9/24/19	Pu-239/240	0.008035	0.0132	0.0204	I	pCi/g
24-5	0/24/10	Pu_238	0.000055	0.0152	0.035	0	pCi/g
2A-5	10/3/10	Po 210	0.6302	0.0152	0.0230		pCi/g
2A-5	10/3/19	F0-210	0.0302	0.0993	0.0420	ΤT	pCi/g
2A-5	0/17/10	0-232 C 14	0.003007	0.034	0.0029	U	pCl/g
2A-5	9/1//19	C-14	0.504	0.339	0.925	U	pCl/g
2A-5	9/28/19	Iodine-129	0.0002	0.326	1.53	U	pCi/g
2A-8	10/1/19	Actinium-227	-0.0693	0.121	0.2	U	pC1/g
2A-8	10/1/19	Actinium-228	1.553	0.167	0.0556		pC1/g
2A-S	10/1/19	Americium-241	0.01662	0.0396	0.0653	U	pCı/g
2A-S	10/1/19	Antimony-125	0.01292	0.0443	0.0429	U	pC1/g
2A-S	10/1/19	Bismuth-212	1.576	0.215	0.169		pCi/g
2A-S	10/1/19	Bismuth-214	1.338	0.144	0.0315		pCi/g
2A-S	10/1/19	Cesium-134	0.08076	0.0224	0.0185		pCi/g
2A-S	10/1/19	Cesium-137	0.06322	0.0179	0.0166		pCi/g
2A-S	10/1/19	Cobalt-60	-0.0122	0.02	0.0201	U	pCi/g

Table B-3. Complete Results from Test America Laboratory for Sample 2 Split

Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC	Qualifier	Units
2A-S	10/1/19	Europium-152	-0.02099	0.059	0.0975	U	pCi/g
2A-S	10/1/19	Europium-154	0.01065	0.0282	0.0331	U	pCi/g
2A-S	10/1/19	Europium-155	0.09216	0.0323	0.0404		pCi/g
2A-S	10/1/19	Lead-210	1.435	0.339	0.356		pCi/g
2A-S	10/1/19	Lead-212	1.602	0.17	0.0222		pCi/g
2A-S	10/1/19	Lead-214	1.455	0.152	0.0283		pCi/g
2A-S	10/1/19	Neptunium-237	0	0.204	0.336	U	pCi/g
2A-S	10/1/19	Niobium-94	0.01615	0.00818	0.0113		nCi/g
2A-S	10/1/19	Potassium-40	21.19	2.19	0.166		pCi/g
2A-S	10/1/19	Protactinium-231	-0.1784	0.733	1.21	U	pCi/g
2A-S	10/1/19	Radium-224	1.602	0.17	0.0222		pCi/g
2A-S	10/1/19	Radium-226	1.338	0.144	0.0315		pCi/g
2A-S	10/1/19	Radium-228	1.553	0.167	0.0556		pCi/g
2A-S	10/1/19	Sodium-22	0.01214	0.0197	0.0198		pCi/g
2A-S	10/1/19	Thallium-208	0.5015	0.0562	0.018		pCi/g
2A-S	10/1/19	Thorium-231	0.1177	0.0611	0.0862		pCi/g
2A-S	10/1/19	Thorium-234	0.9809	0.184	0.229		pCi/g
2A-S	9/18/19	Н-3	0.02131	0.144	0.249	U	pCi/g
2A-S	9/6/19	Percent Moisture	1.8		0.1	-	%
2A-S	9/6/19	Percent Solids	98.2		0.1		%
2A-S	9/20/19	Sr-90	0.1336	0.149	0.244		nCi/g
2A-S	10/9/19	Pu-241	1.382	0.854	1.36		pCi/g
2A-S	10/2/19	Tc-99	-0.07105	0.156	0.264	U	nCi/g
2B-S	10/16/19	Fe-55	0.9805	1.59	2.72	Ŭ	nCi/g
2B-S	10/16/19	Ni-59	0.4817	1.09	1.78	Ū	nCi/g
2B-S	10/16/19	Ni-63	0.426	1.13	1.89	Ŭ	pCi/g
MB	10/1/19	Actinium-227	0.01172	0.0208	0.0435	Ū	pCi/g
MB	10/1/19	Actinium-228	0.006607	0.0118	0.0138	0	pCi/g
MB	10/1/19	Americium-241	0.002497	0.00561	0.00793	U	nCi/g
MB	10/1/19	Antimony-125	0.002135	0.00314	0.0138	Ŭ	nCi/g
MB	10/1/19	Bismuth-212	0.03024	0.0562	0.0939	Ŭ	nCi/g
MB	10/1/19	Bismuth-214	-0.0211	0.0115	0.0289	Ŭ	nCi/g
MB	10/1/19	Cesium-134	0.002381	0.00722	0.00826	Ŭ	pCi/g
MB	10/1/19	Cesium-137	-0.003303	0.00682	0.00874	Ŭ	nCi/g
MB	10/1/19	Cobalt-60	0.0002161	0.00597	0.00686	Ŭ	nCi/g
MB	10/1/19	Europium-152	0.0002797	0.000624	0.0237	Ŭ	nCi/g
MB	10/1/19	Europium-154	0.005856	0.0123	0.00779	0	nCi/g
MB	10/1/19	Europium-155	0	0.00361	0.0171	U	nCi/g
MB	10/1/19	Lead-210	-0.03349	0.0777	0.109	Ŭ	pCi/g
MB	10/1/19	Lead-212	-0.004769	0.00791	0.0132	Ū	nCi/g
MB	10/1/19	Lead-214	-0.006914	0.00871	0.0141	Ŭ	pCi/g
MB	10/1/19	Neptunium-237	0.007025	0.0236	0.0394	Ū	pCi/g
MB	10/1/19	Niobium-94	-0.0001432	0.000186	0.00622	Ū	pCi/g
MB	10/1/19	Potassium-40	-0.007605	0.0655	0.0845	Ū	pCi/g
MB	10/1/19	Protactinium-231	0.04191	0.146	0.245	U	pCi/g
MB	10/1/19	Radium-224	-0.004769	0.00791	0.0132	U	pCi/g
MB	10/1/19	Radium-226	-0.0211	0.0115	0.0289	U	pCi/g
MB	10/1/19	Radium-228	0.006607	0.0118	0.0138		pCi/g
MB	10/1/19	Sodium-22	-0.001575	0.00389	0.0067	U	pCi/g
MB	10/1/19	Thallium-208	0.006689	0.00422	0.00446		pCi/g
MB	10/1/19	Thorium-231	0.009053	0.019	0.0334	U	pCi/g
MB	10/1/19	Thorium-234	0.009272	0.0329	0.0605	U	pCi/g
MB	9/20/19	Sr-90	0.04688	0.178	0.305	U	pCi/g
MB	9/24/19	Am-241	0.009716	0.0103	0.0149		pCi/g
MB	9/24/19	Cm-242	0	0.00381	0.00571	U	pCi/g
MB	9/24/19	Cm-243/244	0.005713	0.00854	0.0146	-	pCi/g
MB	9/23/19	Am-243	0.003496	0.00857	0.0167	U	pCi/g
MB	9/23/19	Cm-245/246	0	0.00702	0.0168	Ū	pCi/g
MB	9/23/19	Cm-247/248	0.009044	0.0096	0.0138	-	pCi/g
MB	9/24/19	Th-227	0.02717	0.0287	0.0434		pCi/g
MB	9/24/19	Th-228	0.02434	0.0332	0.0433		pCi/g
							-

 Table B-3. Complete Results from Test America Laboratory for Sample 2 Split

	5-5. Comple	ic Results II0	m rest Amerik			sampic 2	Split
Sample no.	Analysis date	Parameter	Result	Uncertainty	MDC	Qualifier	Units
MB	9/24/19	Th-230	-0.0196	0.0409	0.0575	U	pCi/g
MB	9/24/19	Th-232	0.0001928	0.0118	0.021	U	pCi/g
MB	9/24/19	U-233/U-234	-0.01257	0.0154	0.0421	U	pCi/g
MB	9/24/19	U-235/U-236	0.00391	0.0135	0.0299	U	pCi/g
MB	9/24/19	U-238	0.003135	0.0109	0.024	U	pCi/g
MB	9/23/19	Th-229	0.01982	0.0193	0.0295		pCi/g
MB	9/17/19	C-14	0.6982	0.566	0.91		pCi/g
MB	9/24/19	Pu-236	-0.01714	0.0219	0.0463	U	pCi/g
MB	9/24/19	Pu-244	0.005695	0.0085	0.0145		pCi/g
MB	9/24/19	Pu-239/240	0.01714	0.0148	0.0211		pCi/g
MB	9/24/19	Pu-238	0.01332	0.0183	0.0308		pCi/g
MB	9/23/19	Pu-242	0.003832	0.00767	0.0147	U	pCi/g
MB	9/23/19	Np-237	0.00384	0.00941	0.0184	U	pCi/g
MB	10/3/19	Po-210	0.03514	0.0208	0.0243		pCi/g
MB	10/9/19	Pu-241	0.2983	0.668	1.12	U	pCi/g
MB	9/17/19	H-3	-0.06563	0.135	0.241	U	pCi/g
MB	9/28/19	Iodine-129	0	0.494	1.88	U	pCi/g
MB	10/2/19	Tc-99	-0.07524	0.187	0.318	U	pCi/g
MB	10/10/19	U-232	-0.002028	0.0157	0.0328	U	pCi/g
MB	10/16/19	Fe-55	1.923	1.5	2.46		pCi/g
MB	10/16/19	Ni-59	-0.08678	0.944	1.59	U	pCi/g
MB	10/16/19	Ni-63	-0.009381	1.05	1.77	U	pCi/g
2A-S	9/23/19	Np-237	0.00502	0.0142	0.0278	U	pCi/g
2A-S	9/23/19	Am-243	0.00335	0.015	0.0321	U	pCi/g
2A-S	9/23/19	Cm-245/246	0.0101	0.0117	0.0101		pCi/g
2A-S	9/23/19	Cm-247/248	0.0104	0.0183	0.0332	U	pCi/g
2A-S	9/23/19	Th-229	0.03	0.0223	0.0255		pCi/g
2A-S	9/24/19	U-233/U-234	0.669	0.147	0.0725		pCi/g
2A-S	9/24/19	U-235/U-236	0.0163	0.0327	0.0624	U	pCi/g
2A-S	9/24/19	U-238	1.02	0.186	0.0501		nCi/g
2A-S	9/24/19	Am-241	0.00344	0.0154	0.0329	U	pCi/g
2A-S	9/24/19	Cm-242	0.00337	0.0117	0.0258	Ū	nCi/g
2A-S	9/24/19	Cm-243/244	0.00674	0.00955	0.0101	Ŭ	pCi/g
2A-S	9/24/19	Th-227	0.0721	0.0439	0.0197	U	nCi/g
2A-S	9/24/19	Th-228	1 38	0.185	0.0557		pCi/g
2A-S	9/24/19	Th-230	1.50	0.155	0.0557		pCi/g
2A-S	9/24/19	Th-230	1 35	0.179	0.077		pCi/g
2A-S	9/24/19	Pu-236	-0.00426	0.0191	0.027	U	pCi/g
2A-S	9/24/19	Pu-244	0.00420	0.0225	0.0407	U	pCi/g
2A-S	9/24/19	Pu_239/240	0.0127	0.0225	0.0407	U	pCi/g
2A-5	0/24/19	Du 238	0.00420	0.0225	0.0471	U	pCi/g
2A-3	10/3/10	Po 210	0 582	0.0295	0.0013	0	pCi/g
2A-3	10/10/10	10-210	0.382	0.091	0.0564	П	pCi/g
24-5	0/17/10	C 14	-0.0309	0.0283	0.008	U	pCi/g
24-5	9/1//19	U-14 Jodina 120	0.008	0.374	1.554	TT	pCr/g
2A-0 2A S	7/2//19 10/1/10	Actinium 227	0 0 0 0 1	0.319	1.03	U	pCi/g
2A-0 2A S	10/1/19	Actinium 220	0.0204	0.0775	0.23	U	pCi/g
2A-5	10/1/19	Actinium-228	1.40	0.162	0.060	Τī	pCi/g
∠A-3	10/1/19	Anumony-125	0.00544	0.04/2	0.05/1	U	pC1/g

Table B-3. Complete Results from Test America Laboratory for Sample 2 Split

MB = Method blank

^a Minimum detectable concentration

^b Qualifier flag:

U = Analyte was analyzed for, but not detected above, the decision level concentration (*Lc*).

G = The MDC was greater than the requested detection level.

Appendix C. Geographical Information Resources

Geographical information system data were obtained from multiple sources and, in many cases, were developed from geo-referenced satellite and other images.

Geographic Information System (GIS) coverages for the maps presented in this report were obtained from the following sites:

- USGS Terrain Data, Land Use, and Digital Line Maps (transportation, streams, rivers, and water bodies) were obtained from WebGIS (<u>http://www.webgis.com</u>)
- Coverages of the fire perimeter were obtained from the Los Angeles County GIS Data Portal <u>https://egis3.lacounty.gov/dataportal/2018/11/21/woolsey-fire-nov-2018-gisdata-applications/</u> and from the California ARCGIS Hub (<u>https://hub.arcgis.com/</u>)
- Coverages of roads, streams, and water bodies were from the California Geoportal (<u>https://gis.data.ca.gov</u>).

The maps presented in the report were developed using the Surfer® Version 17 software (<u>www.goldensoftware.com</u>). Some of the GIS shapefiles obtained from the resources above were processed using ArcGIS software (<u>www.esri.com</u>). Coordinates of meteorological stations and air samplers and the data from them were provided by Boeing.

Appendix D. Statistical Analysis

Two-sample *t*-tests were performed between mean radionuclide concentrations for background samples taken in the Chatsworth formation (samples 1, 3, 4, and 5) and those taken in the Modelo formation and within the deposition plume (samples 8, 9, 13, 14, 15, and 18). The two-sample t-test is given by (Huntsberger and Billingsley [1987]; StatTrek.com [2019]):

$$t_{cal} = \frac{\left(\bar{x}_{1} - \bar{x}_{2}\right) - \xi}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$
D-1

where

 \overline{x}_1 and \overline{x}_2 = means of samples 1 and 2 σ_1 and σ_2 = standard deviations of samples 1 and 2 ξ = hypothesized difference between samples.

Tabulated t values (t_{tab}) are based on the pooled degrees of freedom given by:

$$df = \frac{\left(\frac{\sigma_1^2}{n_1} + \frac{\sigma_1^2}{n_1}\right)^2}{\left(\frac{\left(\sigma_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(\sigma_2^2/n_2\right)^2}{n_2 - 1}\right)}$$
D-2

The soil concentrations by layer for ²²⁶Ra, ²²⁸Ra, ²³⁰Th, ²³²Th, ²⁰⁸Tl, ^{233/234}U, and ²³⁸U are summarized in Table D-1.

Radionuclide	Location	0–3 cm (pCi g ⁻¹)	3-6 cm (pCi g ⁻¹)	6–12 cm (pCi g ⁻¹)	12-cm Weighted average (pCi g ⁻¹)
		Modelo	tormation		
Ra-226	13	2.35E+00	2.26E+00	2.00E+00	2.15E+00
Ra-226	14	1.55E+00	1.47E+00	1.54E+00	1.53E+00
Ra-226	15	1.27E+00	1.23E+00	1.33E+00	1.29E+00
Ra-226	16	1.68E+00	1.53E+00	1.52E+00	1.56E+00
Ra-226	18	1.79E+00	1.76E+00	1.88E+00	1.83E+00
Mean		1.73E+00	1.65E+00	1.65E+00	1.67E+00
σ		3.98E-01	3.90E-01	2.77E-01	3.30E-01
n		5.00E+00	5.00E+00	5.00E+00	5.00E+00
Ra-228	13	1.25E+00	1.18E+00	1.15E+00	1.18E+00

 Table D-1. Mean and Standard Deviation of Uranium and Thorium Decay Series

 Radionuclide Concentrations in Samples in the Modelo and Chatsworth Formations

Dediemalide	Lesstian	0-3 cm	3-6 cm	6-12 cm	12-cm Weighted average
Radionucide		(pC1g)	(pCig)	(pClg)	(pClg)
Ra-228	14	1.05E+00	9.94E-01	1.00E+00	1.04E+00
Ra-228	15	1.02E+00	1.01E+00	1.08E+00	1.05E+00
Ra-228	16	1.03E+00	9.22E-01	9.01E-01	9.69E-01
Ra-228	18	1.22E+00	1.24E+00	1.20E+00	1.25E+00
Mean		1.11E+00	1.0/E+00	1.10E+00	1.10E+00
0		1.11E-01	1.34E-01	1.11E-01	1.13E-01
<i>n</i>	10	5.00E+00	5.00E+00	5.00E+00	5.00E+00
Th-230	13	2.30E+00	2.37E+00	2.15E+00	2.24E+00
Th-230	14	1.52E+00	1.33E+00	1.23E+00	1.33E+00
Th-230	15	9.11E-01	1.12E+00	1.10E+00	1.06E+00
Th-230	16	1.71E+00	1.63E+00	1.57E+00	1.62E+00
Th-230	18	1.86E+00	1.82E+00	2.12E+00	1.98E+00
Mean		1.66E+00	1.65E+00	1.63E+00	1.65E+00
σ		5.08E-01	4.82E-01	4.89E-01	4.78E-01
n		5.00E+00	5.00E+00	5.00E+00	5.00E+00
Th-232	13	8.83E-01	8.32E-01	8.48E-01	8.53E-01
Th-232	14	8.29E-01	7.30E-01	6.15E-01	6.97E-01
Th-232	15	6.99E-01	7.64E-01	7.26E-01	7.29E-01
Th-232	16	8.61E-01	7.22E-01	7.67E-01	7.79E-01
Th-232	18	9.14E-01	7.72E-01	8.64E-01	8.54E-01
Mean		8.37E-01	7.64E-01	7.64E-01	7.82E-01
σ		8.33E-02	4.36E-02	1.01E-01	7.10E-02
n		5.00E+00	5.00E+00	5.00E+00	5.00E+00
T1-208	13	4.13E-01	4.11E-01	3.49E-01	3.81E-01
T1-208	14	3.08E-01	2.65E-01	2.96E-01	2.91E-01
T1-208	15	3.07E-01	3.10E-01	3.25E-01	3.17E-01
T1-208	16	3.22E-01	2.81E-01	3.06E-01	3.04E-01
T1-208	18	3.69E-01	3.70E-01	3.74E-01	3.72E-01
Mean		3.44E-01	3.27E-01	3.30E-01	3.33E-01
σ		4.62E-02	6.15E-02	3.18E-02	4.07E-02
n		5.00E+00	5.00E+00	5.00E+00	5.00E+00
U-233/234	13	9.64E-01	8.24E-01	1.01E+00	9.52E-01
U-233/234	14	7.04E-01	8.31E-01	7.43E-01	7.55E-01
U-233/234	15	6.41E-01	6.60E-01	6.12E-01	6.31E-01
U-233/234	16	1.09E+00	1.05E+00	1.08E+00	1.08E+00
U-233/234	18	9.29E-01	9.24E-01	9.48E-01	9.37E-01

 Table D-1. Mean and Standard Deviation of Uranium and Thorium Decay Series

 Radionuclide Concentrations in Samples in the Modelo and Chatsworth Formations

				1	2-cm Weighted
		0–3 cm	3–6 cm	6–12 cm	average
Radionuclide	Location	$(pCi g^{-1})$	$(pCi g^{-1})$	$(pCi g^{-1})$	$(pCi g^{-1})$
Mean		8.66E-01	8.58E-01	8.79E-01	8.70E-01
σ		1.87E-01	1.43E-01	1.95E-01	1.76E-01
n		5.00E+00	5.00E+00	5.00E+00	5.00E+00
U-238	13	1.00E+00	7.95E-01	1.09E+00	9.94E-01
U-238	14	7.76E-01	6.91E-01	6.78E-01	7.06E-01
U-238	15	6.21E-01	6.70E-01	6.25E-01	6.35E-01
U-238	16	1.23E+00	1.28E+00	1.29E+00	1.27E+00
U-238	18	8.46E-01	9.01E-01	9.05E-01	8.89E-01
Mean		8.95E-01	8.67E-01	9.18E-01	8.99E-01
σ		2.32E-01	2.48E-01	2.79E-01	2.53E-01
n		5.00E+00	5.00E+00	5.00E+00	5.00E+00
		Chatsworth	h formation		
Ra-226	1	1.15E+00	1.11E+00	1.16E+00	1.14E+00
Ra-226	3	1.45E+00	1.39E+00	1.50E+00	1.46E+00
Ra-226	4	1.03E+00	1.10E+00	1.12E+00	1.09E+00
Ra-226	5	1.31E+00	1.33E+00	1.17E+00	1.25E+00
Mean		1.24E+00	1.23E+00	1.24E+00	1.23E+00
σ		1.84E-01	1.51E-01	1.77E-01	1.63E-01
n		4.00E+00	4.00E+00	4.00E+00	4.00E+00
Ra-228	1	1.60E+00	1.66E+00	1.72E+00	1.67E+00
Ra-228	3	1.71E+00	1.86E+00	1.91E+00	1.85E+00
Ra-228	4	1.42E+00	1.50E+00	1.60E+00	1.53E+00
Ra-228	5	1.73E+00	1.99E+00	1.55E+00	1.71E+00
Mean		1.62E+00	1.75E+00	1.69E+00	1.69E+00
σ		1.42E-01	2.16E-01	1.60E-01	1.30E-01
n		4.00E+00	4.00E+00	4.00E+00	4.00E+00
Th-230	1	1.10E+00	1.31E+00	1.11E+00	1.16E+00
Th-230	3	1.24E+00	1.30E+00	1.44E+00	1.36E+00
Th-230	4	8.49E-01	1.01E+00	1.06E+00	9.95E-01
Th-230	5	1.09E+00	1.08E+00	1.26E+00	1.17E+00
Mean		1.07E+00	1.18E+00	1.22E+00	1.17E+00
σ		1.62E-01	1.54E-01	1.70E-01	1.47E-01
n		4.00E+00	4.00E+00	4.00E+00	4.00E+00
Th-232	1	1.21E+00	1.57E+00	1.14E+00	1.26E+00
Th-232	3	1.32E+00	1.25E+00	1.25E+00	1.27E+00
Th-232	4	1.12E+00	1.25E+00	1.18E+00	1.18E+00

Table D-1. Mean and Standard Deviation of Uranium and Thorium Decay Series
Radionuclide Concentrations in Samples in the Modelo and Chatsworth Formations

Radionuclide	Location	0-3 cm	3-6 cm	6-12 cm (nCi a^{-1})	12-cm Weighted average ($nCi a^{-1}$)
Th-232	5	1.30F+00	133F+00	133F+00	1.32F+00
Mean	5	1.30E+00 1 24E+00	1.35E+00	1.33E+00 1.23E+00	1.32E+00
G		9.23E-02	1.55E+00	8 28F-02	5 77E-02
n		4 00F+00	4 00F+00	4 00F+00	4 00F+00
л T1-208	1	4 94F-01	4 74F-01	5 39F-01	5 12F-01
T1-208	3	5 10E-01	5 36E-01	5.77E-01	5.50F-01
T1-208	4	4.45E-01	4.65E-01	4.67E-01	4.61E-01
T1-208	5	5.20E-01	5.71E-01	4.78E-01	5.12E-01
Mean	U	4.92E-01	5.12E-01	5.15E-01	5.09E-01
σ		3.33E-02	5.07E-02	5.19E-02	3.65E-02
n		4.00E+00	4.00E+00	4.00E+00	4.00E+00
U-233/234	1	9.69E-01	9.64E-01	9.77E-01	9.71E-01
U-233/234	3	1.17E+00	1.39E+00	1.69E+00	1.49E+00
U-233/234	4	1.03E+00	1.09E+00	9.29E-01	9.95E-01
U-233/234	5	1.13E+00	9.17E-01	1.13E+00	1.08E+00
Mean		1.07E+00	1.09E+00	1.18E+00	1.13E+00
σ		9.19E-02	2.13E-01	3.50E-01	2.40E-01
п		4.00E+00	4.00E+00	4.00E+00	4.00E+00
U-238	1	9.26E-01	1.02E+00	1.13E+00	1.05E+00
U-238	3	1.19E+00	1.50E+00	1.63E+00	1.49E+00
U-238	4	9.11E-01	1.09E+00	8.95E-01	9.48E-01
U-238	5	9.61E-01	1.18E+00	1.12E+00	1.10E+00
Mean		9.97E-01	1.20E+00	1.19E+00	1.15E+00
σ		1.30E-01	2.13E-01	3.10E-01	2.36E-01
<u>n</u>		4.00E+00	4.00E+00	4.00E+00	4.00E+00

 Table D-1. Mean and Standard Deviation of Uranium and Thorium Decay Series

 Radionuclide Concentrations in Samples in the Modelo and Chatsworth Formations

Two tests were performed. In the first test, the null hypothesis and alternative hypotheses were:

$$H_o: u_M = u_C$$
$$H_a: u_M \neq u_C$$

where u_M and u_C are the mean radionuclide concentrations in the Modelo and Chatsworth formations, respectively. A second t-test was performed where the null and alternative hypotheses were:

$$H_o: u_M - u_C \le 0$$
$$H_a: u_M - u_C \ge 0$$

Results are presented in Table D-2. At the 95% confidence level (i.e., α =0.05), there was no significant difference between the mean ²²⁶Ra concentrations in the 0–3 cm and 3–6 cm layer, but there was a significant difference in the 6–12 cm layer. For ²³⁰Th, ²³⁴U, and ²³⁸U there was no significant difference between concentrations in the Chatsworth and Modelo formations in all layers, and thus no significant difference between sample locations in and outside the plume. For ²³²Th, ²²⁸Th, ²²⁸Ra, and ²⁰⁸Tl (thorium decay series), a significant difference was observed between the two formations in all layers. Thorium decay series radionuclide concentrations in the Modelo formation and within the plume were *lower* compared to the background samples taken outside the plume and in the Chatsworth formation.

				-		Accepted h	ypothesis ^{a,}	b
				12-cm weighted				12-cm weighted
Ra-226	0–3 cm	3–6 cm	6–12 cm	average	0–3 cm	3–6 cm	6–12 cm	average
df	5	5	6	6				
t_{cal}	2.46E+00	2.21E+00	2.74E+00	2.59E+00				
t_{tab} (2-tail)	2.57E+00	2.57E+00	2.45E+00	2.45E+00	H_o	H_o	H_a	H_a
u_M	1.73E+00	1.65E+00	1.65E+00	1.67E+00				
u_C	1.24E+00	1.23E+00	1.24E+00	1.23E+00				
t_{tab} (1-tail)	2.57E+00	2.57E+00	2.45E+00	2.45E+00	H_o	H_o	H_a	H_a
Ra-228								
df	5	4	5	6				
t _{cal}	5.77E+00	5.52E+00	6.28E+00	7.17E+00				
t_{tab} (2-tail)	2.57E+00	2.78E+00	2.57E+00	2.45E+00	H_a	H_a	H_a	H_a
u_M	1.11E+00	1.07E+00	1.10E+00	1.10E+00				
u_C	1.62E+00	1.75E+00	1.69E+00	1.69E+00				
t_{tab} (1-tail)	2.57E+00	2.78E+00	2.57E+00	2.45E+00	H_a	H_a	H_a	H_a
Th-230								
df	4	4	5	4				
t _{cal}	2.45E+00	2.09E+00	1.77E+00	2.10E+00				
t_{tab} (2-tail)	2.78E+00	2.78E+00	2.57E+00	2.78E+00	H_o	H_o	H_o	H_o
u_M	1.66E+00	1.65E+00	1.63E+00	1.65E+00				
u_C	1.07E+00	1.18E+00	1.22E+00	1.17E+00				
t_{tab} (1-tail)	2.78E+00	2.78E+00	2.57E+00	2.78E+00	H_o	H_o	H_o	H_o
Th-232								
df	6	3	6	6				
t_{cal}	6.73E+00	7.49E+00	7.54E+00	1.11E+01				
t_{tab} (2-tail)	2.45E+00	3.18E+00	2.45E+00	2.45E+00	H_a	H_a	H_a	H_a
\mathcal{U}_M	8.37E-01	7.64E-01	7.64E-01	7.82E-01				

 Table D-2. t-test Results for Uranium and Thorium Decay Series Radionuclides in Samples

 Taken in the Modelo and Chatsworth Formations

				-	Accepted hypothesis ^{a,b}			
Ra-226	0–3 cm	3–6 cm	6–12 cm	12-cm weighted average	0–3 cm	3–6 cm	6–12 cm	12-cm weighted average
иc	1.24E+00	1.35E+00	1.23E+00	1.26E+00				
t _{tab} (1-tail)	2.45E+00	3.18E+00	2.45E+00	2.45E+00	H_a	H_a	H_a	H_a
T1-208								
df	6	6	4	6				
t _{cal}	5.60E+00	4.92E+00	6.26E+00	6.82E+00				
ttab (2-tail)	2.45E+00	2.45E+00	2.78E+00	2.45E+00	H_a	H_a	H_a	H_a
u_M	3.44E-01	3.27E-01	3.30E-01	3.33E-01				
u_C	4.92E-01	5.12E-01	5.15E-01	5.09E-01				
t_{tab} (1-tail)	2.45E+00	2.45E+00	2.78E+00	2.45E+00	H_a	H_a	H_a	H_a
U-234								
df	6	5	4	5				
t _{cal}	2.19E+00	1.87E+00	1.55E+00	1.83E+00				
t_{tab} (2-tail)	2.45E+00	2.57E+00	2.78E+00	2.57E+00	H_o	H_o	H_o	H_o
u_M	8.66E-01	8.58E-01	8.79E-01	8.70E-01				
u_C	1.07E+00	1.09E+00	1.18E+00	1.13E+00				
t_{tab} (1-tail)	2.45E+00	2.57E+00	2.78E+00	2.57E+00	H_o	H_o	H_o	H_o
U-238								
df	6	6	6	6				
t _{cal}	8.36E-01	2.14E+00	1.39E+00	1.51E+00				
t_{tab} (2-tail)	2.45E+00	2.45E+00	2.45E+00	2.45E+00	H_o	H_o	H_o	H_o
\mathcal{U}_M	8.95E-01	8.67E-01	9.18E-01	8.99E-01				
u_C	9.97E-01	1.20E+00	1.19E+00	1.15E+00				
t_{tab} (1-tail)	2.45E+00	2.45E+00	2.45E+00	2.45E+00	H_o	H_o	H_o	H_o
a. Nul	l and altern	ate hypoth	esis for 1-t	ailed t-test:	$H_o: u_M =$	<i>ис, На</i> : им	$u \neq u_{C.} t_{val}$	based on
$\alpha = 0$	0.05.	. 1 .1		1	11.	< 0 II		0

Table D-2. t-test Results for Uranium and Thorium Decay Series Radionuclides in Sample	es
Taken in the Modelo and Chatsworth Formations	

b. Null and alternate hypothesis for 2-tailed t-test: $H_o: u_M - u_C \le 0, H_a: u_M - u_C \ge 0. t_{val}$

based on $\alpha = 0.05$.

References

Huntsberger, D.V. and P.P Billingsley. 1987. Elements of Statistical Inference: Sixth Edition. Boston, MA: Allyn and Bacon Inc.

StatTrek 2019. Available at <u>www.stattrek.com</u>. Accessed November 12, 2019.

Appendix E. Potential Dose that Soil Sampling Can Detect

This Appendix evaluates the potential dose that sampling in surface soils would be able to distinguish above background. The comparison of predicted and observed $PM_{2.5}$ concentrations presented in Section 3.4 demonstrates that the source release and atmospheric transport model produced credible results. These results can be used to estimate the amount of deposition that may be observed in soil that would result in radiological dose to a person at the location. This calculation requires several parameters that are calculated from the concentration and deposition values. These parameters are the concentration (X/Q) and deposition (ψ/Q) factors and are given by:

$$X/Q = \frac{X_{air}}{Q}$$

$$\psi/Q = \frac{\psi_{grd}}{Q}$$
(E-1)

where

X_{air}	=	average $PM_{2.5}$ concentration during the simulated time period (g m ⁻³)
ψ_{grd}	=	average deposition rate of PM2.5 on the ground surface during the assessment
		period (g $m^{-2} s^{-1}$)
Q	=	release rate of PM _{2.5} during the simulated time period (g s ⁻¹)
X/Q	=	concentration factor (s m^{-3})
ψO	=	deposition factor (m^{-2}) .

For these calculations, we simulated a 10-hour period starting from the ignition of the fire at 14:24 PST 8 November 2018. During this period, the fire burned across portions of Area IV where known contamination exists and includes regions 1 through 5 identified in Figure 2-2. Concentrations and deposition rates were extracted from grid files generated from CALPOST and viewed using the Surfer[®] software (Golden Software 2019). Concentration and deposition values at a location on the northeast corner of the Oak Park community where concentration and deposition were the highest were extracted. Using the data in Table 2-2, the total PM_{2.5} emissions for November 8 (regions 1 through 5) was calculated to be 2.99×10^8 g and the average release rate over 10 hours was 8,304 g s⁻¹. The calculated *X/Q* and ψ/Q and supporting data are presented in Table E-1.

$\psi_{1} = 1$. I arameters values for Calculation of x_{1}/y_{2} and ψ_{1}/y_{2} at the Oak I ark Comm					
Quantity	Value				
10-hr average $PM_{2.5}$ concentration (g m ⁻³)	2.93E-04				
10-hr average $PM_{2.5}$ deposition (g m ⁻²)	8.90E-06				
$PM_{2.5}$ release rate for regions 1–5 (g s ⁻¹)	8.30E+03				
$X/Q (\rm s \ m^{-3})$	3.53E-08				
ψ/Q (m ⁻²)	1.07E-09				

Table E-1. Parameters Values for Calculation of X/Q and ψ/Q at the Oak Park Community^a

^{a.} Located at UTM 338750E 3783550N and node row 140 and node column 177 in the file conc-pm25-Nov8.grd for concentration and in the file totalPM2.5dflx-Nov8-10hr-ASCII.grd for deposition.

The effective dose for a given release rate can be calculated using the X/Q and ψ/Q values, an exposure scenario, and dose coefficients. These calculations focus on three anthropogenic radionuclides that have been detected on the SSFL: ¹³⁷Cs, ⁹⁰Sr, and ²³⁹Pu, and the naturally occurring radionuclide ²²⁶Ra. The effective dose for a person exposed to radionuclides in the plume and deposited on the ground is calculated by:

$$D = Q \begin{bmatrix} \left(X/Q \times BR \times ET_{inh} \times DC_{inh} \right) + \left(X/Q \times ET_{sub} \times \frac{3600 \text{ s}}{\text{hour}} \times DC_{sub} \right) \\ + \left(\psi/Q \times RT \times ET_{ext} \times \frac{3600 \text{ s}}{\text{hour}} \times DC_{ext} \right) \end{bmatrix}$$
(E-2)

where

= release rate (pCi s^{-1}) 0 breathing rate $(m^3 hr^{-1})$ BR = = exposure time for inhalation (hours) ET_{inh} = dose coefficient for inhalation (mrem pCi^{-1}) DC_{inh} ET_{sub} exposure time for submersion (hours) = submersion dose coefficient (mrem $m^3 s^{-1} pCi^{-1}$) DC_{sub} = release time (36,000 s) RT = exposure time for exposure from radionuclides deposited on the ground (hours) ET_{grd} = ground plane dose coefficient (mrem $m^2 s^{-1} pCi^{-1}$). DC_{grd} =

Equation (E-2) is solved for Q for an effective dose that is protective of human health (i.e., the limiting dose). The exposure scenario assumes the person inhales SSFL-derived radionuclides entrained in the smoke plume and resides at their residence for a year¹ following the fire where they receive external radiation from radionuclides that have deposited on the ground. The Q value is then used in the following equation to calculate the surface soil concentration:

$$C_{soil} = \frac{Q \times \psi / Q \times RT}{\rho_b \times T}$$
(E-3)

¹ Radiation standards are stated on an annual basis.

where

 $\rho_b = bulk density (g m^{-3})$ T = thickness of soil layer (m).

The exposure scenario assumes that during the fire, the person is engaged in light activity 50% of the time and moderate activity for the remainder. Mean breathing rates for light and moderate activity for a person 31 to 41 years old from EPA (2011) are 0.012 m³ min⁻¹ (0.72 m³ hr⁻¹) and 0.027 m³ min⁻¹ (1.62 m³ hr⁻¹), respectively, for a weighted mean of 1.17 m³ hr⁻¹.

During the following year, default occupancy factors from RESRAD v7.2 (Kamboj et al. 2018) were adapted. These factors include 50% of the time spent indoors, 25% of the time spent outdoors, 25% of the time spent away from the home, and an indoor gamma shielding factor of 0.7. The occupancy factor multiplied by the number of hours in a year (8,760) gives the exposure time to radionuclides deposited on the ground. The occupancy factor (*OF*) and exposure time for ground exposure (*EF*_{grd}) is calculated as:

$$OF = 0.5 \times 0.7 + 0.25 \times 1.0 + 0.25 \times 0.0 = 0.6$$

 $ET_{grd} = 0.6 \times 8760$ hours = 5256 hours

Parameters for the dose calculation are summarized in Table E-2. Dose coefficients, shown in Table E-3 are from DOE (2011a) for inhalation and from EPA (2019) for external exposure (submersion and ground plane).

Table E-2. Parameters Used in the Dose Calculation							
Parameter	Value	Units	Reference or comments				
Breathing rate, <i>BR</i>	1.17	$m^3 hr^{-1}$	Calculated from data in EPA (2011)				
Occupancy factor, OF	0.6		Calculated based on Kamboj et al.				
			(2018)				
Inhalation exposure time, ET_{inh}	10	hours	Based on plume passage time				
Submersion exposure time, <i>ET</i> _{sub}	10	hours	Based on plume passage time				
Ground exposure time, ET _{grd}	5256	hours	Calculated based on Kamboj et al.				
			(2018)				
Bulk density, ρ_b	1.0E6	$\mathrm{g}~\mathrm{m}^{-3}$	Assumed surface soil value				
Soil layer thickness, T	0.03	m	Sampling depth for surface soil				

Table E-3. Dose Coefficients used in Dose Calculations

					Submersion in air
		Inhalation		Ground plane DC	DC
Radio-		solubility	Inhalation DC	(mrem-m ²	(mrem-m ³
nuclide	Progeny ^a	Type ^b	(mrem pCi ⁻¹)	$pCi^{-1} s^{-1}$)	$pCi^{-1} s^{-1}$)
$^{137}Cs^{c}$		F	1.70E-05	2.90E-14	1.44E-12
	^{137m} Ba	F	e	1.44E-12	9.84E-11
²³⁹ Pu		Μ	6.22E-02	1.55E-16	1.22E-14
⁹⁰ Sr ^d		Μ	1.45E-04	2.41E-14	1.49E-12
	⁹⁰ Y	М	e	5.44E-13	1.18E-11

RISK ASSESSMENT CORPORATION

science > environment > community
					Submersion in air
		Inhalation		Ground plane DC	DC
Radio-		solubility	Inhalation DC	(mrem-m ²	(mrem-m ³
nuclide	Progeny ^a	Type ^b	(mrem pCi ⁻¹)	$pCi^{-1} s^{-1}$)	$pCi^{-1} s^{-1}$)
²²⁶ Ra		М	1.41E-02	1.51E-14	1.11E-12
	²¹⁴ Bi	Μ	e	3.70E-12	2.67E-10
	²¹⁴ Pb	М	e	6.07E-13	4.11E-11

^{a.} Radioactive progeny that are in secular equilibrium in the environment.

^{b.} Default solubility class from ICRP (1996).

- ^{c.} External doses for ¹³⁷Cs includes the dose from ¹³⁷Cs plus the dose from ¹³⁷mBa \times a branching fraction of 0.944.
- ^{d.} External doses for ⁹⁰Sr includes the dose from ⁹⁰Sr plus the dose from ⁹⁰Y \times a branching fraction of 1.0.
- ^{e.} Inhalation dose coefficient includes these progeny.

The calculated Q values for limiting doses of 0.01 mrem, 0.1 mrem, and 1.0 mrem are presented in Table E-4 along with unit doses (*UD*) for the inhalation, submersion, and external exposure pathways. Release inventories are calculated with Equation E-2 solved for Q. Unit dose factors are the quantities in Equation E-2 for the inhalation, submersion, and external exposure pathways for a 1 pCi Q value. Thus, the *UD* values and Q values are calculated by:

$$UD_{inh} = 1 \text{ pCi } \times \left(X/Q \times BR \times ET_{inh} \times DC_{inh} \right)$$
$$UD_{sub} = 1 \text{ pCi } \times \left(X/Q \times ET_{sub} \times \frac{3600 \text{ s}}{\text{hour}} \times DC_{sub} \right)$$
$$UD_{ext} = 1 \text{ pCi } \times \left(\psi/Q \times RT \times ET_{ext} \times \frac{3600 \text{ s}}{\text{hour}} \times DC_{ext} \right)$$
(E-4)

and

$$Q = \frac{D_L}{UD_{inh} + UD_{sub} + UD_{ext}}$$
(E-5)

where D_L is the limiting dose (0.01 mrem, 0.1 mrem, and 1.0 mrem).

 Table E-4. Radionuclide Release Inventories (Q) that Result in an Annual Effective Dose of

 0.01 mrem, 0.1 mrem, and 1.0 mrem at Oak Park and Unit Dose Factors

Radio-	<i>Q</i> for 0.01	<i>Q</i> for 0.1	<i>Q</i> for 1.0	Inhalation	Submersion	External unit
nuclide	mrem	mrem	mrem	unit dose	unit dose	dose
	(pCi)	(pCi)	(pCi)	(mrem pCi ⁻¹)	(mrem pCi ⁻¹)	(mrem pCi ⁻¹)
¹³⁷ Cs	3.52E+11	3.52E+12	3.52E+13	1.58E-16	3.33E-18	2.82E-14
²³⁹ Pu	1.74E+10	1.74E+11	1.74E+12	5.76E-13	4.31E-22	3.14E-18
⁹⁰ Sr	7.77E+11	7.77E+12	7.77E+13	1.34E-15	4.68E-19	1.15E-14
²²⁶ Ra	1.56E+9	1.56E+10	1.56E+11	1.31E-13	1.52E-19	6.26E-12

The surface soil concentration that corresponds to the limiting dose can be compared to analytical detection limits (Section 5.3) and background concentrations (Section 4.2.2) to determine if the activity deposited on soil surface could be detected by sampling. The soil concentrations from deposition were calculated for three limiting effective doses: 1.0 mrem, 0.1 mrem, and 0.01 mrem (Table E-5). These effective doses are a factor of 100, 1,000, and 10,000 times lower than the annual effective dose limit above background from human sources recommended by the International Commission on Radiological Protection (ICRP), National Council on Radiation Protection and Measurements (NCRP), and implemented in DOE-Order 458.1 (DOE 2011b) of 100 mrem. Moreover, these effective doses are well below the average effective dose from natural background a typical person normally receives in a year of about 310 mrem (NCRP 2009). As shown in Table E-5, if a 0.1 mrem annual effective dose was received by an individual residing near Oak Park, then the soil sampling would be able to detect the presence of anthropogenic radionuclides deposited on soil from the Woolsey fire above that which is currently present in soil. For a dose of 0.01 mrem, estimated soil concentrations would be difficult to distinguish from background. Radium-226 is naturally occurring, has a high background concentration value relative to the other three radionuclides, and is released to the air from any natural wildfire. A ²²⁶Ra release from either a natural or anthropogenic source resulting in an effective dose of 10 mrem could theoretically be detected in soil.

	Soil concentration from deposition for limiting effective dose (pCi g ⁻¹)						
Radionuclide	1.0 mrem	0.1 mrem	0.01 mrem	MDC (pCi/g) ^a	Background (pCi/g) ^b		
¹³⁷ Cs	1.26	0.126	0.0126	0.007	0.229		
²³⁹ Pu	0.062	0.0062	6.20×10^{-4}	0.005	0.0134		
⁹⁰ Sr	2.78	0.278	0.0278	0.015	0.0735		
²²⁶ Ra	5.59×10 ⁻³	5.59×10^{-4}	5.59×10^{-5}	0.02	1.88		
^{a.} Minimum detectable concentration, see Table 5-2.							
^{b.} Background threshold value, see Table 4-2.							

 Table E-5. Results of Soil Concentration Calculation for Limiting Effective Dose

Thus, the sampling sensitivity should detect SSFL radionuclides deposited on the soil surface from the fire that would result in an effective dose of 0.1 mrem to an individual. Sensitivity of detecting natural occurring radionuclides that were also used in SSFL operations is complicated because naturally occurring radionuclides are present in all soils and vegetation and are released to the air during a fire. For example, radionuclides of the uranium and thorium decay series have anthropogenic sources on the SSFL but also are found naturally in soils in varying abundances.

Cesium-137 is an important radionuclide because it has a low MDC (i.e., readily detected in soil), has the highest measured concentration of the long-lived fission products detected on the SSFL (1,600 pCi g⁻¹ in 1989; 819 pCi g⁻¹ decay corrected to 2018), and as it is relatively immobile in soils, it would not leach away like ⁹⁰Sr. Plutonium isotopes were also measured on the SSFL but concentrations were substantially lower than those of ¹³⁷Cs or ⁹⁰Sr. Thus, ¹³⁷Cs is a good indicator of radionuclide releases from the Woolsey fire burning across SSFL.

References

- DOE (U.S. Department of Energy). 2011a. *Derived Concentration Technical Standard*. DOE-Std-1196-2011. U.S. Department of Energy, Washington, D.C.
- DOE. 2011b. *Radiation Protection of the Public and Environment*. DOE Order 458.1. U.S. Department of Energy, Washington, D.C. February.
- EPA (U.S. Environmental Protection Agency). 2011. *Exposure Factors Handbook*. EPA/600/R-090/052F. U.S. EPA, Office of Research and Development, Washington, D.C.
- EPA. 2019. *External Exposure to Radionuclides in Air, Water and Soil*. EPA-402/R19/002. U.S. EPA, Office of Radiation and Indoor Air, Washington, D.C.
- Golden Software. 2019. Surfer Version 17.1.288. Golden Software LLC, Golden, CO. (www.goldensoftware.com).
- ICRP (International Commission on Radiological Protection). 1996. Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 5 Compilation of Ingestion and Inhalation Dose Coefficients. Publication 72. International Commission on Radiological Protection, Oxford, UK.
- Kamboj, S., E. Gnanapragasam, and C. Yu. 2018. User's Guide for the RESRAD Onsite Code Version 7.2. ANL/EVS/TM-18/1. Argonne National Laboratory, Argonne, IL.
- NCRP (National Council on Radiation Protection and Measurements). 2009. *Ionizing Radiation Exposure of Population of the United States*. NCRP Report No. 160. National Council on Radiation Protection and Measurements, Bethesda, MD.

T 803.536.4883 F 803.534.1995 417 Till Road Neeses, South Carolina 29107 www.racteam.com